Tìm m để đường thẳng y = m x + 1 - 2 cắt đồ thị hàm số y = x 3 + 3 x 2 - 4 tại ba điểm phân biệt.
A. m > 3
B. m < 3
C. m > -3
D. m < -3
Bài 1: Cho hàm số y= (m -3).x+m+2
a) Tìm m để đồ thị hàm số cắt trục tung tại điểm có tung độ = -3
b) Tìm m để đồ thị hàm số song song với đường thẳng y= -2x+1
c) Tìm m để đồ thị hàm số vuông góc với đường thẳng y= -2x-3
Bài 2: Đồ thị hàm số y= ax+b (a ≠ 0) và đường thẳng y = a'x+ b' ( b ≠ 0). Khi a.a'= -1
(mink đag cần gấp)
Để hàm số y=(m-3)x+m+2 là hàm số bậc nhất thì \(m-3\ne0\)
hay \(m\ne3\)
a) Để đồ thị hàm số y=(m-3)x+m+2 cắt trục tung tại điểm có tung độ bằng -3 thì
Thay x=0 và y=-3 vào hàm số y=(m-3)x+m+2, ta được:
\(\left(m-3\right)\cdot0+m+2=-3\)
\(\Leftrightarrow m+2=-3\)
hay m=-5(nhận)
b) Để đồ thị hàm số y=(m-3)x+m+2 song song với đường thẳng y=-2x+1 thì
\(\left\{{}\begin{matrix}m-3=-2\\m\ne1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=1\\m\ne1\end{matrix}\right.\Leftrightarrow m\in\varnothing\)
Vậy: Không có giá trị nào của m để đồ thị hàm số y=(m-3)x+m+2 song song với đường thẳng y=-2x+1
Bài 4: Cho hàm số y = (1 - m)x + m - 2
a) Tìm điều kiện để hàm số trên là hàm số bậc nhất
c) Tìm m để đồ thị hàm số song song với đường thẳng y = 2x - 3
d) Tìm m để đồ thị hàm số cắt đường thẳng y = -x + 1
e) Tìm m để đồ thị hàm số đi qua điểm A(2;1)
g) Tìm m để đồ thị hàm số tạo với trục Ox một góc nhọn, một góc tù
h) Tìm m để đồ thị hàm số cắt trục tung tại điểm có tung độ bằng 3
f) Tìm m để đồ thị hàm số cắt trục hoành tại điểm có hoành độ bằng -2
a: Để hàm số y=(1-m)x+m-2 là hàm số bậc nhất thì \(1-m\ne0\)
=>\(m\ne1\)
c: Để đồ thị hàm số y=(1-m)x+m-2 song song với đường thẳng y=2x-3 thì
\(\left\{{}\begin{matrix}1-m=2\\m-2\ne-3\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}m=-1\\m\ne-1\end{matrix}\right.\)
=>\(m\in\varnothing\)
d: Để đồ thị hàm số y=(1-m)x+m-2 cắt đường thẳng y=-x+1 thì \(1-m\ne-1\)
=>\(m\ne2\)
e: Thay x=2 và y=1 vào y=(1-m)x+m-2, ta được:
2(1-m)+m-2=1
=>2-2m+m-2=1
=>-m=1
=>m=-1
g: Để đồ thị hàm số y=(1-m)x+m-2 tạo với trục Ox một góc nhọn thì 1-m>0
=>m<1
Để đồ thị hàm số y=(1-m)x+m-2 tạo với trục Oy một góc tù thì 1-m<0
=>m>1
h: Thay x=0 và y=3 vào y=(1-m)x+m-2, ta được:
0(1-m)+m-2=3
=>m-2=3
=>m=5
f: Thay x=-2 và y=0 vào y=(1-m)x+m-2, ta được:
-2(1-m)+m-2=0
=>-2+2m+m-2=0
=>3m-4=0
=>3m=4
=>\(m=\dfrac{4}{3}\)
Bài 4: Cho hàm số y = (1 - m)x + m - 2
a) Tìm điều kiện để hàm số trên là hàm số bậc nhất
b) Tìm m để hàm số nghịch biến
c) Tìm m để đồ thị hàm số song song với đường thẳng y = 2x - 3
d) Tìm m để đồ thị hàm số cắt đường thẳng y = -x + 1
e) Tìm m để đồ thị hàm số đi qua điểm A(2;1)
g) Tìm m để đồ thị hàm số tạo với trục Ox một góc nhọn, một góc tù
h) Tìm m để đồ thị hàm số cắt trục tung tại điểm có tung độ bằng 3
f) Tìm m để đồ thị hàm số cắt trục hoành tại điểm có hoành độ bằng -2
b: Để hàm số y=(1-m)x+m-2 nghịch biến trên R thì 1-m<0
=>m>1
Bài 1 : Cho hàm số bậc nhất y=(2m-1)x +3m
a. Tìm m để đồ thị hàm số cắt trục tung tại điểm có tung độ bằng 2
b. Tìm m để đô thị hàm số song song với đường thẳng y = x-1
c. Tìm m để đồ thị hàm số đi qua giao điểm của 2 đường thẳng sau : y= 3x+2-4
d. Tìm m để đô thị hàm số cắt đường thẳng y= 2x+1 tại điểm có hoành độ là -4
e. Tìm m để đô thị hàm số cắt đường thẳng y=3x-5 tại điểm có tung độ là 2
Cho hàm số \(y=\left(m-1\right)x-4\) có đồ thị là đường thẳng (d).
a) Vẽ đồ thị hàm số trên khi \(m=3\)
b) Tìm m để đường thẳng (d) song song với đường thẳng \(y=-3x+2\)
c) Tìm m để đường thẳng (d) cắt đồ thị hàm số \(y=x-7\) tại một điểm nằm bên trái trục tung
b: Để (d)//y=-3x+2 thì m-1=-3
=>m=-2
c:
PTHĐGĐ là:
(m-1)x-4=x-7
=>(m-2)x=-3
Để hai đường cắt nhau tại một điểm nằm bên trái trục tung thì m-1<>1 và -3/(m-2)<0
=>m<>2 và m-2>0
=>m>2
Bài 1 : Cho hàm số y = (m + 5)x+ 2m – 10
Với giá trị nào của m thì y là hàm số bậc nhất
Với giá trị nào của m thì hàm số đồng biến.
Tìm m để đồ thị hàm số điqua điểm A(2; 3)
Tìm m để đồ thị cắt trục tung tại điểm có tung độ bằng 9.
Tìm m để đồ thị đi qua điểm 10 trên trục hoành .
Tìm m để đồ thị hàm số song song với đồ thị hàm số y = 2x -1
Chứng minh đồ thị hàm số luôn đi qua 1 điểm cố định với mọi m.
Tìm m để khoảng cách từ O tới đồ thị hàm số là lớn nhất
Bài 2: Cho đường thẳng y=2mx +3-m-x (d) . Xác định m để:
Đường thẳng d qua gốc toạ độ
Đường thẳng d song song với đường thẳng 2y- x =5
Đường thẳng d tạo với Ox một góc nhọn
Đường thẳng d tạo với Ox một góc tù
Đường thẳng d cắt Ox tại điểm có hoành độ 2
Đường thẳng d cắt đồ thị Hs y= 2x – 3 tại một điểm có hoành độ là 2
Đường thẳng d cắt đồ thị Hs y= -x +7 tại một điểm có tung độ y = 4
Đường thẳng d đi qua giao điểm của hai đường thảng 2x -3y=-8 và y= -x+1
Bài 3: Cho hàm số y=( 2m-3).x+m-5
Vẽ đồ thị với m=6
Chứng minh họ đường thẳng luôn đi qua điểm cố định khi m thay đổi
Tìm m để đồ thị hàm số tạo với 2 trục toạ độ một tam giác vuông cân
Tìm m để đồ thị hàm số tạo với trục hoành một góc 45o
Tìm m để đồ thị hàm số tạo với trục hoành một góc 135o
Tìm m để đồ thị hàm số tạo với trục hoành một góc 30o , 60o
Tìm m để đồ thị hàm số cắt đường thẳng y = 3x-4 tại một điểm trên 0y
Tìm m để đồ thị hàm số cắt đường thẳng y = -x-3 tại một điểm trên 0x
Bài4 (Đề thi vào lớp 10 tỉnh Hải Dương năm 2000,2001) Cho hàm số y = (m -2)x + m + 3
a)Tìm điều kiện của m để hàm số luôn luôn nghịch biến .
b)Tìm điều kiện của m để đồ thị cắt trục hoành tại điểm có hoành độ bằng 3.
c)Tìm m để đồ thị hàm số y = -x + 2, y = 2x –1 và y = (m - 2)x + m + 3 đồng quy.
d)Tìm m để đồ thị hàm số tạo với trục
Bài 1:
Đặt: (d): y = (m+5)x + 2m - 10
Để y là hàm số bậc nhất thì: m + 5 # 0 <=> m # -5
Để y là hàm số đồng biến thì: m + 5 > 0 <=> m > -5
(d) đi qua A(2,3) nên ta có:
3 = (m+5).2 + 2m - 10
<=> 2m + 10 + 2m - 10 = 3
<=> 4m = 3
<=> m = 3/4
(d) cắt trục tung tại điểm có tung độ bằng 9 nên ta có:
9 = (m+5).0 + 2m - 10
<=> 2m - 10 = 9
<=> 2m = 19
<=> m = 19/2
(d) đi qua điểm 10 trên trục hoành nên ta có:
0 = (m+5).10 + 2m - 10
<=> 10m + 50 + 2m - 10 = 0
<=> 12m = -40
<=> m = -10/3
(d) // y = 2x - 1 nên ta có:
\(\hept{\begin{cases}m+5=2\\2m-10\ne-1\end{cases}}\) <=> \(\hept{\begin{cases}m=-3\\m\ne\frac{9}{2}\end{cases}}\) <=> \(m=-3\)
Giả sử (d) luôn đi qua điểm cố định M(x0; y0)
Ta có: \(y_0=\left(m+5\right)x_0+2m-10\)
<=> \(mx_0+5x_0+2m-10-y_0=0\)
<=> \(m\left(x_o+2\right)+5x_0-y_0-10=0\)
Để M cố định thì: \(\hept{\begin{cases}x_0+2=0\\5x_0-y_0-10=0\end{cases}}\) <=> \(\hept{\begin{cases}x_0=-2\\y_0=-20\end{cases}}\)
Vậy...
Cho hàm số: (d): y=(3-m).x+m+1
a) Tìm m để hàm số là hàm số bậc nhất
b) Tìm m để đồ thị hàm số cắt trục hoành tại điểm có hoành độ bằng -2
c) Tìm m để đồ thị hàm số cắt đường thẳng y= -x+4 tại 1 điểm trên trục tung
d) Tìm m để đồ thị hàm số tạo với 2 trục tam giác có diện tích bằng 2
e) Tìm điểm cố định mà đồ thị hàm số luôn qua với mọi m
giải hộ mình bài này đc k
cho hàm số y=(m-2)x+m+3 (1)
a) Tìm giá trị của m để đồ thị hàm số (1) song song vs đường thẳng y=-x+3
b)Tìm giá trị của m để đồ thị hàm số (1) cắt đường thẳng y=2x+4 tại điểm có tung độ bằng 2
a.
ĐTHS song với với đường thẳng đã cho khi:
\(\left\{{}\begin{matrix}m-2=-1\\m+3\ne3\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m=1\\m\ne0\end{matrix}\right.\) \(\Rightarrow m=1\)
b.
Gọi A là giao điểm của ĐTHS và \(y=2x+4\Rightarrow y_A=2\)
\(\Rightarrow2x_A+4=2\Rightarrow x_A=-1\)
\(\Rightarrow A\left(-1;2\right)\)
Thế tọa độ A vào (1):
\(-1\left(m-2\right)+m+3=2\Leftrightarrow5=2\left(ktm\right)\)
Vậy ko tồn tại m thỏa mãn yêu cầu đề bài
Cho hàm số y=(m+1)x-2 có đồ thị là đường thẳng d. Tìm m để đồ thị hàm số d cắt đồ thị hàm số y=x+3 tại điểm có tung độ là 2.
Cho hàm số bậc nhất \(y=\left(2m-1\right)x-3m+5\) có đồ thị hàm số là đường thẳng (d)
a) Vẽ đồ thị hàm số khi m = 2
b) Tìm m để (d) song song với đường thẳng (\(d_1\)) : \(y=-3x+2\)
c) Tìm m để (d) cắt đường thẳng (\(d_1\)) : \(y=-3x+2\) tại 1 điểm nằm trên trục tung
a) Khi m =2 thì y = 3x - 1
(Bạn tự vẽ tiếp)
b) Để \((d)//(d_{1})\) thì \(\begin{cases} 2m-1=-3\\ -3m+5\neq2 \end{cases} \) ⇔ \(\begin{cases} m=-1\\ m\neq1 \end{cases} \) ⇔ \(m=-1\)
c)
Để \((d) ⋂ (d1)\) thì \(2m-1\neq-3 \) ⇔ \(m\neq-1\)
Giao điểm của 2 đường thẳng thuộc trục tung => x=0
Khi đó, ta có: \(y=-3.0+2=2\)
⇒ Điểm \((0;2)\) cũng thuộc đường thẳng (d)
⇒ \(2=(2m-1).0-3m+5\) ⇔ \(m=1\) (TM)