Tích phân ∫ 0 2 d x x + 3 bằng:
A. 16 225
B. log 5 3
C. ln 5 3
D. 2 15
1) phân tích thành phân tử:
a) x^3y^3 + 1/125
b) (x+5)^3-(x-5)^3
c) (6-x)^3+(6+x)^3
d) 27x^3 -135x^2+225x-125
2) tìm x:
a)4x^2-25x^4=0
b) x^2-8x+16=0
c)x^3-3x^2+3x-1=0
1.
a) = (xy + \(\frac{1}{5}\)) (x2y2 - \(\frac{xy}{5}\)+ \(\frac{1}{25}\))
b) = (x + 5 - x + 5) [(x+5)2 + (x+5)(x-5) + (x-5)2] = 10 (x2 + 10x + 25 + x2 - 25 + x2 - 10x + 25) = 10 (3x2 +25)
c) = (6 - x + 6 + x) [(6-x)2 - (6-x)(6+x) + (6+x)2] = 12 (36 - 12x + x2 - 26 + x2 + 36 + 12x + x2) = 12 (3x2 + 36) = 12. 3(x2 + 12) = 36(x2 +12)
d) = (3x - 5)3
2.
a) => (2x - 5x2)(2x + 5x2) = 0 ............. giải ra
b) => (x-4)2 = 0 => x - 4 = 0 => x= 4
c) => (x - 1)3 = 0 => x - 1 = 0 => x = 1
Cho phân thức A= x²+8x+16/ x²-16 a) Tìm điều kiện xác định của A. b) Rút gọn phân thức. c) Tìm giá trị của x để phân thức A có giá trị bằng 3. d ) Có giá trị nào của x để giá trị của phân thức A bằng 0 hay không? Tại sao?
Lời giải:
a. ĐKXĐ: $x^2-16\neq 0\Leftrightarrow (x-4)(x+4)\neq 0$
$\Leftrightarrow x\neq \pm 4$
b. $A=\frac{x^2+8x+16}{x^2-16}=\frac{(x+4)^2}{(x-4)(x+4)}=\frac{x+4}{x-4}$
c. $A=3\Leftrightarrow \frac{x+4}{x-4}=3$
$\Rightarrow x+4=3(x-4)$
$\Leftrightarrow -2x+16=0$
$\Leftrightarrow x=8$ (tm)
d.
$A=0\Leftrightarrow \frac{x+4}{x-4}=0\Leftrightarrow x+4=0\Leftrightarrow x=-4$
Mà theo ĐKXĐ thì $x\neq \pm 4$ nên không tồn tại $x$ để $A=0$
Bài 1:Lập thành các cặp phân số bằng nhau từ tích sau:
a,(-3).10=15.(-2)
b,x.6=y.(-7) [ x,y thuộc z; x,y khác 0]
Bài 2:Tìm x,y,z
a,15/x =x/4=x/16=6/-8=
b,x/3=y/20=4
Bài 3: Phân tích các đa thức sau thành nhân tử:
a) x2 + 10x + 25. b) 8x - 16 - x2
c) x3 + 3x2 + 3x + 1 d) (x + y)2 - 9x2
e) (x + 5)2 – (2x -1)2
Bài 4: Tìm x biết
a) x2 – 9 = 0 b) (x – 4)2 – 36 = 0
c) x2 – 10x = -25 d) x2 + 5x + 6 = 0
Bài 3
a) x² + 10x + 25
= x² + 2.x.5 + 5²
= (x + 5)²
b) 8x - 16 - x²
= -(x² - 8x + 16)
= -(x² - 2.x.4 + 4²)
= -(x - 4)²
c) x³ + 3x² + 3x + 1
= x³ + 3.x².1 + 3.x.1² + 1³
= (x + 1)³
d) (x + y)² - 9x²
= (x + y)² - (3x)²
= (x + y - 3x)(x + y + 3x)
= (y - 2x)(4x + y)
e) (x + 5)² - (2x - 1)²
= (x + 5 - 2x + 1)(x + 5 + 2x - 1)
= (6 - x)(3x + 4)
Bài 4
a) x² - 9 = 0
x² = 9
x = 3 hoặc x = -3
b) (x - 4)² - 36 = 0
(x - 4 - 6)(x - 4 + 6) = 0
(x - 10)(x + 2) = 0
x - 10 = 0 hoặc x + 2 = 0
*) x - 10 = 0
x = 10
*) x + 2 = 0
x = -2
Vậy x = -2; x = 10
c) x² - 10x = -25
x² - 10x + 25 = 0
(x - 5)² = 0
x - 5 = 0
x = 5
d) x² + 5x + 6 = 0
x² + 2x + 3x + 6 = 0
(x² + 2x) + (3x + 6) = 0
x(x + 2) + 3(x + 2) = 0
(x + 2)(x + 3) = 0
x + 2 = 0 hoặc x + 3 = 0
*) x + 2 = 0
x = -2
*) x + 3 = 0
x = -3
Vậy x = -3; x = -2
1Rút gọn biểu thức a) (3x+1)^2+(3x-1)^2-2(3x+1)(3x-1) b) 8(3^2+1)(3^4+1)...(2^16+1) c ) (2^2+1)(2^4+1)...(2^32+1) 2 Tìm x biết a) x(2x-1)-2x+1=0 b) 3x(x-1)=x-1 c) 3(x+2)-x^2-2x=0 d) x^3+x=0 3 Phân tích thành nhân tử a) 4x^3-x b) 6x^2-12xy+6y^2-24z^2
Bài 2:
a: Ta có: \(x\left(2x-1\right)-2x+1=0\)
\(\Leftrightarrow\left(2x-1\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=1\end{matrix}\right.\)
1/phân tích thành phân tử
a. x^6 - 64
b. x^3+3x^2 + 3x+1- y^3
c. x^3 - 27+ x( x-3)
d, y^6 - 625
2/tìm x biết
a. 25x^2 -1=0
b. 4 (x-1)^2 -9 =0
c. 1/4 -9(x-1)^2 =0
d. 1/16 - ( 2x + 3/4) ^2 =0
1/4 nghĩa là 1 phần 4 á nhé, nhờ giúp đỡ
2/
a/ \(25x^2-1=0\)
<=> \(\left(5x\right)^2-1=0\)
<=> \(\left(5x-1\right)\left(5x+1\right)=0\)
<=> \(\orbr{\begin{cases}5x-1=0\\5x+1=0\end{cases}}\)<=> \(\orbr{\begin{cases}x=\frac{1}{5}\\x=-\frac{1}{5}\end{cases}}\)
b/ \(4\left(x-1\right)^2-9=0\)
<=> \(\left[2\left(x-1\right)\right]^2-3^2=0\)
<=> \(\left(2x-2\right)^2-3^2=0\)
<=> \(\left(2x-2-3\right)\left(2x-2+3\right)=0\)
<=> \(\left(2x-5\right)\left(2x+1\right)=0\)
<=> \(\orbr{\begin{cases}2x-5=0\\2x+1=0\end{cases}}\)<=> \(\orbr{\begin{cases}x=\frac{5}{2}\\x=-\frac{1}{2}\end{cases}}\)
c/ \(\frac{1}{4}-9\left(x+1\right)^2=0\)
<=> \(\left(\frac{1}{2}\right)^2-\left[3\left(x-1\right)\right]^2=0\)
<=> \(\left(\frac{1}{2}\right)^2-\left(3x-3\right)^2=0\)
<=> \(\left(\frac{1}{2}-3x+3\right)\left(\frac{1}{2}+3x-3\right)=0\)
<=> \(\left(\frac{7}{2}-3x\right)\left(-\frac{5}{2}+3x\right)=0\)
<=> \(\orbr{\begin{cases}\frac{7}{2}-3x=0\\-\frac{5}{2}+3x=0\end{cases}}\)<=> \(\orbr{\begin{cases}3x=\frac{7}{2}\\3x=\frac{5}{2}\end{cases}}\)
<=> \(\orbr{\begin{cases}x=\frac{7}{6}\\x=\frac{5}{6}\end{cases}}\)
d/ \(\frac{1}{16}-\left(2x+\frac{3}{4}\right)^2=0\)
<=> \(\left(\frac{1}{4}\right)^2-\left(2x+\frac{3}{4}\right)^2=0\)
<=> \(\left(\frac{1}{4}-2x-\frac{3}{4}\right)\left(\frac{1}{4}+2x+\frac{3}{4}\right)=0\)
<=> \(\left(-\frac{1}{2}-2x\right)\left(1+2x\right)=0\)
<=> \(2\left(-\frac{1}{4}-x\right)\left(1+2x\right)=0\)
<=> \(\orbr{\begin{cases}-\frac{1}{4}-x=0\\1+2x=0\end{cases}}\)<=> \(\orbr{\begin{cases}x=-\frac{1}{4}\\x=-\frac{1}{2}\end{cases}}\)
bài 1: phân tích đa thức thành nhân tử bằng cách ( phân tích đa thức bậc 2 )
a, x^2 + 5x + 4
b, x^2 - 6x + 5
c, x^2 + 7x + 12
d, 2x^2 - 5X + 3
e, 7x - 3x^2 - 4
f, x^2 - 10x + 16
a, x^2 + 5x +4
= x^2 + 1x + 4x + 4
= (x^2 + 1x) + (4x + 4)
= x ( x + 1 ) + 4 ( x + 1 )
= (x + 1) (x + 4)
b, x^2 - 6x + 5
= x^2 - 1x - 5x + 5
= (x^2 - 1x) - (5x - 5)
= x (x - 1) - 5 (x - 1)
= (x - 1) (x - 5)
c, x^2 + 7x + 12
= x^2 + 3x + 4x + 12
= (x^2 + 3x) + (4x + 12)
= x (x + 3) + 4 (x + 3)
= (x + 3) (x + 4)
d, 2x^2 - 5x + 3
= 2^x2 - 2x - 3x + 3
= 2x (x - 1) - 3 (x - 1)
= (x-1) (2x - 3)
e, 7x - 3x^2 - 4
= 3x + 4x - 3x^2 - 4
= (3x - 3x^2) + (4x - 4)
= 3x (1 - x) + 4 (x - 1)
= 3x (1-x) - 4 (1 - x)
= (1 - x) (3x - 4)
f, x^2 - 10x + 16
= x^2 - 2x - 8x + 16
= (x^2 - 2x) - (8x - 16)
= x (x - 2) - 8 (x - 2)
= (x - 2) (x - 8)
a, (x+1)(x+4)
b,(x-5)(x-1)
c,(x+3)(x+4)
d,(2x-3)(x-1)
e,(-3x+4)(x-1)
f, (x-8)(x-2)
a) x( x-2 ) lớn hoặc bằng 0
b)x (x - 2 ) nhỏ hơn hoặc bằng 0
c) x+ 2/ 3 -x > 0
d) x+2/3-x < hoặc =0
e) (x^2 -2) * ( 16- x ^ 2) < hoặc bằng 0
a) \(x\left(x-2\right)\ge0\)
\(\Rightarrow x\ge0\)hoặc \(x-2\ge0\)
\(\Rightarrow x\ge0\)hoặc \(x\ge2\)
\(S=\left\{xlx\ge0\right\}\)
b)\(x\left(x-2\right)\le0\)
\(\Rightarrow x\le0\)hoặc \(x-2\le0\)
\(\Rightarrow x\le0\)hoặc \(x\le2\)
\(S=\left\{xlx\le2\right\}\)
Phân tích đa thức thành nhân tử bằng phương pháp đặt ẩn phụ | dạng (x+a)(x+b)(x+c)(x+d) + e với ( a+b = c+d)
(x+2)(x+4)(x+6)(x+8) + 16
Ta có : (x+2)(x+4)(x+6)(x+8) + 16
=[(x+2).(x+8)].[(x+4)(x+6)]+16
=(x2+10x+16).(x2+10x+24)+16 (1)
Đặt x^2+10x+16=a thì (1) trở thành:
a.(a+8)+16=a2+8a+16=(a+4)2=(x^2+10x+20)2
x^5+x^4-16x-16/x^3-6x^2-9x+14
a)Tìm điều kiện của x để giá trị các phân thức được xác định
b)Rút gọn phân thức
c)Tìm giá trị của x để giá trị của phân thức bằng 0
d)Tìm giá trị của phân thức A tại x=3