Những câu hỏi liên quan
DA
Xem chi tiết
H24
Xem chi tiết
PB
Xem chi tiết
CT
21 tháng 9 2018 lúc 1:59

Xét phương trình f’ (x) = x2+(4-m) x+5-2m=0

⇔ x 2 + 4 x + 5 = m ( x + 2 ) ⇔ g ( x ) = x 2 + 4 x + 5 x + 2 = m

Ta có nghiệm của f’ (x)=0 cũng là hoành độ giao  điểm của g(x)=m

Khi đó từ bảng biến thiên ta có YCBT khi m>  2.

Chọn A.

Bình luận (0)
PL
Xem chi tiết
NT
3 tháng 9 2021 lúc 13:13

Câu 2: 

Thay x=0 và y=-3 vào (d), ta được:

m+2=-3

hay m=-5

Bình luận (0)
H24
Xem chi tiết
QR
Xem chi tiết
H24
Xem chi tiết
LM
Xem chi tiết
NT
16 tháng 12 2023 lúc 14:04

a: Để hàm số y=(2m+3)x-2m+5 nghịch biến trên R thì 2m+3<0

=>2m<-3

=>\(m< -\dfrac{3}{2}\)

b: Để (d)//(d1) thì

\(\left\{{}\begin{matrix}2m+3=3m-2\\-2m+5\ne1\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}-m=-5\\-2m\ne-4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=5\\m\ne2\end{matrix}\right.\)

=>m=5

c: Thay y=5 vào y=3x-1, ta được:

3x-1=5

=>3x=6

=>x=6/3=2

Thay x=2 và y=5 vào (d), ta được:

\(2\left(2m+3\right)-2m+5=5\)

=>\(4m+6-2m+5=5\)

=>2m+11=5

=>2m=-6

=>m=-6/2=-3

d: Tọa độ A là:

\(\left\{{}\begin{matrix}y=0\\\left(2m+3\right)x-2m+5=0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}y=0\\x\left(2m+3\right)=2m-5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=0\\x=\dfrac{2m-5}{2m+3}\end{matrix}\right.\)

=>\(A\left(\dfrac{2m-5}{2m+3};0\right)\)

\(OA=\sqrt{\left(\dfrac{2m-5}{2m+3}-0\right)^2+\left(0-0\right)^2}=\sqrt{\left(\dfrac{2m-5}{2m+3}\right)^2}=\left|\dfrac{2m-5}{2m+3}\right|\)

Tọa độ B là:

\(\left\{{}\begin{matrix}x=0\\y=x\left(2m+3\right)-2m+5=0\left(2m+3\right)-2m+5=-2m+5\end{matrix}\right.\)

=>\(B\left(-2m+5;0\right)\)

\(OB=\sqrt{\left(-2m+5-0\right)^2+\left(0-0\right)^2}\)

\(=\sqrt{\left(-2m+5\right)^2}=\left|2m-5\right|\)

Vì Ox\(\perp\)Oy

nên OA\(\perp\)OB

=>ΔOAB vuông tại O

=>\(S_{OAB}=\dfrac{1}{2}\cdot\left|2m-5\right|\cdot\dfrac{\left|2m-5\right|}{\left|2m+3\right|}\)

\(=\dfrac{1}{2}\cdot\dfrac{\left(2m-5\right)^2}{\left|2m+3\right|}\)

Để \(S_{AOB}=1\) thì \(\dfrac{\dfrac{1}{2}\left(2m-5\right)^2}{\left|2m+3\right|}=1\)

=>\(\dfrac{\left(2m-5\right)^2}{\left|2m+3\right|}=2\)

=>\(\left(2m-5\right)^2=2\left|2m+3\right|\)

=>\(\left(2m-5\right)^2=2\left(2m+3\right)\)

=>\(4m^2-20m+25-4m-6=0\)

=>\(4m^2-24m+19=0\)

=>\(m=\dfrac{6\pm\sqrt{17}}{2}\)

Bình luận (0)
DK
Xem chi tiết
PB
Xem chi tiết
CT
29 tháng 8 2017 lúc 13:35

Hàm số y   =   f x  với f(x) là hàm đa thức bậc 3 có 5 điểm cực trị khi và chỉ khi hàm số f(x) có hai cực trị và đồ thị của hàm số cắt trục hoành tại 3 điểm phân biệt.

Mặt khác, f(x) là hàm số bậc 3 nên khi đồ thị hàm số cắt trục hoành tại 3 điểm phân biệt thì hàm số đồng thời cũng có hai cực trị. Do đó ta chỉ cần tìm điều kiện để phương trình f(x) = 0 có 3 nghiệm phân biệt.

Chọn D

Bình luận (0)