Những câu hỏi liên quan
PB
Xem chi tiết
CT
3 tháng 12 2019 lúc 9:36

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Bình luận (0)
PB
Xem chi tiết
CT
20 tháng 5 2019 lúc 11:25

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Bình luận (0)
H24
Xem chi tiết
AD
Xem chi tiết
NT
9 tháng 8 2023 lúc 15:44

1: 

a: sin a=căn 3/2

\(cosa=\sqrt{1-sin^2a}=\sqrt{1-\dfrac{3}{4}}=\sqrt{\dfrac{1}{4}}=\dfrac{1}{2}\)

\(tana=\dfrac{\sqrt{3}}{2}:\dfrac{1}{2}=\sqrt{3}\)

cot a=1/tan a=1/căn 3

b: \(tana=2\)

=>cot a=1/tan a=1/2

\(1+tan^2a=\dfrac{1}{cos^2a}\)

=>\(\dfrac{1}{cos^2a}=5\)

=>cos^2a=1/5

=>cosa=1/căn 5

\(sina=\sqrt{1-cos^2a}=\sqrt{\dfrac{4}{5}}=\dfrac{2}{\sqrt{5}}\)

c: \(cosa=\sqrt{1-\left(\dfrac{5}{13}\right)^2}=\dfrac{12}{13}\)

tan a=5/13:12/13=5/12

cot a=1:5/12=12/5

Bình luận (0)
NH
Xem chi tiết
NA
Xem chi tiết
TT
11 tháng 9 2015 lúc 23:25

D = \(\left(sin^2a+cos^2a\right)+\left(cos\left(90-a\right)-sina\right)+1+\left(tan^2\left(90-a\right)-\frac{1}{sin^2a}\right)\)

  \(=1+\left(sina-sina\right)+1+\left(cot^2a-1-cos^2a\right)=1+1-1=1\)

Bình luận (0)
H24
Xem chi tiết
NT
15 tháng 7 2021 lúc 20:43

a) Ta có: \(\sin^2\alpha+\cos^2\alpha=1\)

\(\Leftrightarrow\cos^2\alpha=1-\dfrac{9}{25}=\dfrac{16}{25}\)

Ta có: \(A=5\cdot\sin^2\alpha+6\cdot\cos^2\alpha\)

\(=5\left(\sin^2\alpha+\cos^2\alpha\right)+\cos^2\alpha\)

\(=5+\dfrac{16}{25}=\dfrac{141}{25}\)

Bình luận (1)
H24
Xem chi tiết
H24
25 tháng 8 2023 lúc 10:12

Để giải bài toán này, ta sẽ sử dụng các công thức và quy tắc trong lượng giác để tính toán.

Trước hết, ta có: sin(α+β) = sinα.cosβ + cosα.sinβ cos(α+β) = cosα.cosβ - sinα.sinβ

Đề bài cho α+β = 1313 và tanα = -2tanβ. Ta có thể suy ra các thông tin sau: tanα = -2tanβ => sinα/cosα = -2sinβ/cosβ => sinα.cosβ = -2sinβ.cosα

Bài toán yêu cầu tính A = sin(α+3π/8) . cos(α+π/8) + sin(β-5π/12) . sin(β-π/12)

Để tính A, ta sẽ thay các giá trị đã biết vào công thức trên:

A = sin(α+3π/8) . cos(α+π/8) + sin(β-5π/12) . sin(β-π/12) = (sinα . cos(3π/8) + cosα . sin(3π/8)) . (cosα . cos(π/8) - sinα . sin(π/8)) + (sinβ . cos(5π/12) - cosβ . sin(5π/12)) . (cosβ . cos(π/12) + sinβ . sin(π/12)) = (sinα . cos(3π/8) + cosα . sin(3π/8)) . (cosα . cos(π/8) - sinα . sin(π/8)) + (sinβ . cos(5π/12) - cosβ . sin(5π/12)) . (cosβ . cos(π/12) + sinβ . sin(π/12)) = (sinα . cos(3π/8) + cosα . sin(3π/8)) . (cosα . cos(π/8) - sinα . sin(π/8)) + (sinβ . cos(5π/12) - cosβ . sin(5π/12)) . (cosβ . cos(π/12) + sinβ . sin(π/12)) = (sinα . cos(3π/8) + cosα . sin(3π/8)) . (cosα . cos(π/8) - sinα . sin(π/8)) + (sinβ . cos(5π/12) - cosβ . sin(5π/12)) . (cosβ . cos(π/12) + sinβ . sin(π/12))

Tuy nhiên, để tính giá trị chính xác của A, cần biết thêm giá trị cụ thể của α và β. Trong câu hỏi của bạn, không có thông tin về α và β, do đó không thể tính toán giá trị của A.

Bình luận (0)
PB
Xem chi tiết
CT
2 tháng 10 2018 lúc 16:37

Do 0 < cos α  < 1 và sin α  > 0 nên tg α  = sin α /cos α  > sin α

Bình luận (0)
MB
Xem chi tiết
MH
7 tháng 9 2023 lúc 20:29

\(sin\alpha=cos\beta=\dfrac{AB}{BC}\)

\(tan\alpha=cot\beta=\dfrac{AB}{AC}\)

Bình luận (0)
NT
8 tháng 9 2023 lúc 8:37

\(\alpha+\beta=90^o\)

\(\Rightarrow\beta=90^o-\alpha\)

Theo đề bài :

\(sin\alpha=cos\beta\)

\(\Rightarrow sin\alpha=cos\left(90^o-\alpha\right)\)

mà \(\alpha;90^o-\alpha\) là 2 góc phụ nhau

\(\Rightarrow cos\left(90^o-\alpha\right)=sin\alpha\left(dpcm\right)\)

Tương tự \(tan\alpha=cot\beta=cot\left(90^o-\alpha\right)\)

Bình luận (0)