Những câu hỏi liên quan
H24
Xem chi tiết
HM
22 tháng 9 2023 lúc 12:22

a) \(\mathop {\lim }\limits_{x \to  + \infty } \frac{{ - x + 2}}{{x + 1}} = \mathop {\lim }\limits_{x \to  + \infty } \frac{{x\left( { - 1 + \frac{2}{x}} \right)}}{{x\left( {1 + \frac{1}{x}} \right)}} = \mathop {\lim }\limits_{x \to  + \infty } \frac{{ - 1 + \frac{2}{x}}}{{1 + \frac{1}{x}}} = \frac{{\mathop {\lim }\limits_{x \to  + \infty } \left( { - 1} \right) + \mathop {\lim }\limits_{x \to  + \infty } \frac{2}{x}}}{{\mathop {\lim }\limits_{x \to  + \infty } 1 + \mathop {\lim }\limits_{x \to  + \infty } \frac{1}{x}}} = \frac{{ - 1 + 0}}{{1 + 0}} =  - 1\)

b) \(\mathop {\lim }\limits_{x \to  - \infty } \frac{{x - 2}}{{{x^2}}} = \mathop {\lim }\limits_{x \to  - \infty } \frac{{x\left( {1 - \frac{2}{x}} \right)}}{{{x^2}}} = \mathop {\lim }\limits_{x \to  - \infty } \frac{1}{x}.\mathop {\lim }\limits_{x \to  - \infty } \left( {1 - \frac{2}{x}} \right)\)

                                \( = \mathop {\lim }\limits_{x \to  - \infty } \frac{1}{x}.\left( {\mathop {\lim }\limits_{x \to  - \infty } 1 - \mathop {\lim }\limits_{x \to  - \infty } \frac{2}{x}} \right) = 0.\left( {1 - 0} \right) = 0\).

Bình luận (0)
H24
Xem chi tiết
QL
22 tháng 9 2023 lúc 11:39

a) \(\mathop {\lim }\limits_{x \to  - 2} \left( {{x^2} + 5x - 2} \right) = \mathop {\lim }\limits_{x \to  - 2} {x^2} + \mathop {\lim }\limits_{x \to  - 2} \left( {5x} \right) - \mathop {\lim }\limits_{x \to  - 2} 2\)

\( = \mathop {\lim }\limits_{x \to  - 2} {x^2} + 5\mathop {\lim }\limits_{x \to  - 2} x - \mathop {\lim }\limits_{x \to  - 2} 2 = {\left( { - 2} \right)^2} + 5.\left( { - 2} \right) - 2 =  - 8\)

b) \(\mathop {\lim }\limits_{x \to 1} \frac{{{x^2} - 1}}{{x - 1}} = \mathop {\lim }\limits_{x \to 1} \frac{{\left( {x - 1} \right)\left( {x + 1} \right)}}{{x - 1}} = \mathop {\lim }\limits_{x \to 1} \left( {x + 1} \right) = \mathop {\lim }\limits_{x \to 1} x + \mathop {\lim }\limits_{x \to 1} 1 = 1 + 1 = 2\)

Bình luận (0)
H24
Xem chi tiết
QL
22 tháng 9 2023 lúc 11:43

a) \(\mathop {\lim }\limits_{x \to  + \infty } \frac{{1 - 3{x^2}}}{{{x^2} + 2x}} = \mathop {\lim }\limits_{x \to  + \infty } \frac{{{x^2}\left( {\frac{1}{{{x^2}}} - 3} \right)}}{{{x^2}\left( {1 + \frac{{2x}}{{{x^2}}}} \right)}} = \mathop {\lim }\limits_{x \to  + \infty } \frac{{\frac{1}{{{x^2}}} - 3}}{{1 + \frac{2}{x}}} = \frac{{\mathop {\lim }\limits_{x \to  + \infty } \frac{1}{{{x^2}}} - \mathop {\lim }\limits_{x \to  + \infty } 3}}{{\mathop {\lim }\limits_{x \to  + \infty } 1 + \mathop {\lim }\limits_{x \to  + \infty } \frac{2}{x}}} = \frac{{0 - 3}}{{1 + 0}} =  - 3\)

b) \(\mathop {\lim }\limits_{x \to  - \infty } \frac{2}{{x + 1}} = \mathop {\lim }\limits_{x \to  - \infty } \frac{2}{{x\left( {1 + \frac{1}{x}} \right)}} = \mathop {\lim }\limits_{x \to  - \infty } \frac{1}{x}.\mathop {\lim }\limits_{x \to  - \infty } \frac{2}{{1 + \frac{1}{x}}} = \mathop {\lim }\limits_{x \to  - \infty } \frac{1}{x}.\frac{{\mathop {\lim }\limits_{x \to  - \infty } 2}}{{\mathop {\lim }\limits_{x \to  - \infty } 1 + \mathop {\lim }\limits_{x \to  - \infty } \frac{1}{x}}} = 0.\frac{2}{{1 + 0}} = 0\).

Bình luận (0)
H24
Xem chi tiết
HM
22 tháng 9 2023 lúc 12:22

a) \(\mathop {\lim }\limits_{x \to  - 1} \left( {3{x^2} - x + 2} \right) = \mathop {\lim }\limits_{x \to  - 1} \left( {3{x^2}} \right) - \mathop {\lim }\limits_{x \to  - 1} x + \mathop {\lim }\limits_{x \to  - 1} 2\)

                                                \( = 3\mathop {\lim }\limits_{x \to  - 1} \left( {{x^2}} \right) - \mathop {\lim }\limits_{x \to  - 1} x + \mathop {\lim }\limits_{x \to  - 1} 2 = 3.{\left( { - 1} \right)^2} - \left( { - 1} \right) + 2 = 6\)

b) \(\mathop {\lim }\limits_{x \to 4} \frac{{{x^2} - 16}}{{x - 4}} = \mathop {\lim }\limits_{x \to 4} \frac{{\left( {x - 4} \right)\left( {x + 4} \right)}}{{x - 4}} = \mathop {\lim }\limits_{x \to 4} \left( {x + 4} \right) = \mathop {\lim }\limits_{x \to 4} x + \mathop {\lim }\limits_{x \to 4} 4 = 4 + 4 = 8\)

c) \(\mathop {\lim }\limits_{x \to 2} \frac{{3 - \sqrt {x + 7} }}{{x - 2}} = \mathop {\lim }\limits_{x \to 2} \frac{{\left( {3 - \sqrt {x + 7} } \right)\left( {3 + \sqrt {x + 7} } \right)}}{{\left( {x - 2} \right)\left( {3 + \sqrt {x + 7} } \right)}} = \mathop {\lim }\limits_{x \to 2} \frac{{{3^2} - \left( {x + 7} \right)}}{{\left( {x - 2} \right)\left( {3 + \sqrt {x + 7} } \right)}}\)

                                         \( = \mathop {\lim }\limits_{x \to 2} \frac{{2 - x}}{{\left( {x - 2} \right)\left( {3 + \sqrt {x + 7} } \right)}} = \mathop {\lim }\limits_{x \to 2} \frac{{ - \left( {x - 2} \right)}}{{\left( {x - 2} \right)\left( {3 + \sqrt {x + 7} } \right)}} = \mathop {\lim }\limits_{x \to 2} \frac{{ - 1}}{{3 + \sqrt {x + 7} }}\)

                                         \( = \frac{{\mathop {\lim }\limits_{x \to 2} \left( { - 1} \right)}}{{\mathop {\lim }\limits_{x \to 2} 3 + \sqrt {\mathop {\lim }\limits_{x \to 2} x + \mathop {\lim }\limits_{x \to 2} 7} }} = \frac{{ - 1}}{{3 + \sqrt {2 + 7} }} =  - \frac{1}{6}\)

Bình luận (0)
QL
Xem chi tiết
HM
22 tháng 9 2023 lúc 15:59

a) \(\mathop {\lim }\limits_{x \to  - 3} {x^2};\)            

Giả sử \(\left( {{x_n}} \right)\) là dãy số bất kì thỏa mãn \(\lim {x_n} =  - 3.\)

Ta có \(\lim x_n^2 = {\left( { - 3} \right)^2} = 9\)

Vậy \(\mathop {\lim }\limits_{x \to  - 3} {x^2} = 9.\)

b) \(\mathop {\lim }\limits_{x \to 5} \frac{{{x^2} - 25}}{{x - 5}}.\)

Giả sử \(\left( {{x_n}} \right)\) là dãy số bất kì thỏa mãn \(\lim {x_n} = 5.\)

Ta có \(\lim \frac{{{x_n}^2 - 25}}{{{x_n} - 5}} = \lim \frac{{\left( {{x_n} - 5} \right)\left( {{x_n} + 5} \right)}}{{{x_n} - 5}} = \lim \left( {{x_n} + 5} \right) = \lim {x_n} + 5 = 5 + 5 = 10\)

Vậy \(\mathop {\lim }\limits_{x \to 5} \frac{{{x^2} - 25}}{{x - 5}} = 10.\)

Bình luận (0)
H24
Xem chi tiết
NT
22 tháng 9 2023 lúc 12:10

a: \(\lim\limits_{x\rightarrow-2}x^2-7x+4=\left(-2\right)^2-7\cdot\left(-2\right)+4=22\)

b: \(\lim\limits_{x\rightarrow3}\dfrac{x-3}{x^2-9}=\lim\limits_{x\rightarrow3}\dfrac{1}{x+3}=\dfrac{1}{3+3}=\dfrac{1}{6}\)

c: \(\lim\limits_{x\rightarrow1}\dfrac{3-\sqrt{x+8}}{x-1}=\lim\limits_{x\rightarrow1}\dfrac{9-x-8}{3+\sqrt{x+8}}\cdot\dfrac{1}{x-1}=\lim\limits_{x\rightarrow1}\dfrac{-1}{3+\sqrt{x+8}}\)

\(=-\dfrac{1}{6}\)

Bình luận (0)
LT
Xem chi tiết
NT
16 tháng 12 2023 lúc 20:54

1: \(\lim\limits_{x\rightarrow4}\dfrac{1-x}{\left(x-4\right)^2}=-\infty\) 

vì \(\left\{{}\begin{matrix}\lim\limits_{x\rightarrow4}1-x=1-4=-3< 0\\\lim\limits_{x\rightarrow4}\left(x-4\right)^2=\left(4-4\right)^2=0\end{matrix}\right.\)

2: \(\lim\limits_{x\rightarrow3^+}\dfrac{2x-1}{x-3}=+\infty\)

vì \(\left\{{}\begin{matrix}\lim\limits_{x\rightarrow3^+}2x-1=2\cdot3-1=5>0\\\lim\limits_{x\rightarrow3^+}x-3=3-3>0\end{matrix}\right.\) và x-3>0

3: \(\lim\limits_{x\rightarrow2^+}\dfrac{-2x+1}{x+2}\)

\(=\dfrac{-2\cdot2+1}{2+2}=\dfrac{-3}{4}\)

4: \(\lim\limits_{x\rightarrow1^-}\dfrac{3x-1}{x+1}=\dfrac{3\cdot1-1}{1+1}=\dfrac{2}{2}=1\)

 

Bình luận (0)
H24
Xem chi tiết
HM
22 tháng 9 2023 lúc 21:07

a) Ta có \(t = \frac{1}{x},\) nên khi x tiến đến 0 thì t tiến đến dương vô cùng do đó

\(\mathop {\lim }\limits_{x \to 0} {\left( {1 + x} \right)^{\frac{1}{x}}} = \mathop {\lim }\limits_{t \to  + \infty } {\left( {1 + \frac{1}{t}} \right)^t} = e\)

b) \(\ln y = \ln {\left( {1 + x} \right)^{\frac{1}{x}}} = \frac{1}{x}\ln \left( {1 + x} \right)\)

\(\mathop {\lim }\limits_{x \to 0} \ln y = \mathop {\lim }\limits_{x \to 0} \frac{{\ln \left( {1 + x} \right)}}{x} = 1\)

c) \(t = {e^x} - 1 \Leftrightarrow {e^x} = t + 1 \Leftrightarrow x = \ln \left( {t + 1} \right)\)

\(\mathop {\lim }\limits_{x \to 0} \frac{{{e^x} - 1}}{x} = \mathop {\lim }\limits_{t \to 0} \frac{t}{{\ln \left( {t + 1} \right)}} = 1\)

Bình luận (0)
H24
Xem chi tiết
NT
23 tháng 7 2023 lúc 11:19

a: \(\lim\limits_{x\rightarrow-1^+}x+1=0\)

=>\(\lim\limits_{x\rightarrow-1^+}\dfrac{1}{x+1}=+\infty\)

b: \(\lim\limits_{x\rightarrow-\infty}1-x^2=\lim\limits_{x\rightarrow-\infty}\left[x^2\left(\dfrac{1}{x^2}-1\right)\right]\)

\(=-\infty\)

c: \(\lim\limits_{x\rightarrow3^-}\dfrac{x}{3-x}=\lim\limits_{x\rightarrow3^-}=\dfrac{-x}{x-3}\)

\(\lim\limits_{x\rightarrow3^-}x-3=0\)

\(\lim\limits_{x\rightarrow3^-}-x=3>0\)

=>\(\lim\limits_{x\rightarrow3^-}\dfrac{x}{3-x}=+\infty\)

Bình luận (0)
TT
Xem chi tiết
HH
24 tháng 1 2021 lúc 12:44

a/ L'Hospital:

 \(=\lim\limits_{x\rightarrow2}\dfrac{x-\left(x+2\right)^{\dfrac{1}{2}}}{\left(4x+1\right)^{\dfrac{1}{2}}-3}=\lim\limits_{x\rightarrow2}\dfrac{1-\dfrac{1}{2}\left(x+2\right)^{-\dfrac{1}{2}}}{\dfrac{1}{2}\left(4x+1\right)^{-\dfrac{1}{2}}.4}=\dfrac{1-\dfrac{1}{2}.4^{-\dfrac{1}{2}}}{2.9^{-\dfrac{1}{2}}}=\dfrac{9}{8}\)

b/ L'Hospital:\(=\lim\limits_{x\rightarrow1}\dfrac{\left(2x+7\right)^{\dfrac{1}{2}}+x-4}{x^3-4x^2+3}=\lim\limits_{x\rightarrow1}\dfrac{\dfrac{1}{2}\left(2x+7\right)^{-\dfrac{1}{2}}.2+1}{3x^2-8x}=\dfrac{9^{-\dfrac{1}{2}}+1}{3-8}=-\dfrac{4}{15}\)

Bình luận (0)