Bài tập cuối chương 3

H24

Tìm các giới hạn sau:

a) \(\mathop {\lim }\limits_{x \to  + \infty } \frac{{ - x + 2}}{{x + 1}}\);

b) \(\mathop {\lim }\limits_{x \to  - \infty } \frac{{x - 2}}{{{x^2}}}\).

HM
22 tháng 9 2023 lúc 12:22

a) \(\mathop {\lim }\limits_{x \to  + \infty } \frac{{ - x + 2}}{{x + 1}} = \mathop {\lim }\limits_{x \to  + \infty } \frac{{x\left( { - 1 + \frac{2}{x}} \right)}}{{x\left( {1 + \frac{1}{x}} \right)}} = \mathop {\lim }\limits_{x \to  + \infty } \frac{{ - 1 + \frac{2}{x}}}{{1 + \frac{1}{x}}} = \frac{{\mathop {\lim }\limits_{x \to  + \infty } \left( { - 1} \right) + \mathop {\lim }\limits_{x \to  + \infty } \frac{2}{x}}}{{\mathop {\lim }\limits_{x \to  + \infty } 1 + \mathop {\lim }\limits_{x \to  + \infty } \frac{1}{x}}} = \frac{{ - 1 + 0}}{{1 + 0}} =  - 1\)

b) \(\mathop {\lim }\limits_{x \to  - \infty } \frac{{x - 2}}{{{x^2}}} = \mathop {\lim }\limits_{x \to  - \infty } \frac{{x\left( {1 - \frac{2}{x}} \right)}}{{{x^2}}} = \mathop {\lim }\limits_{x \to  - \infty } \frac{1}{x}.\mathop {\lim }\limits_{x \to  - \infty } \left( {1 - \frac{2}{x}} \right)\)

                                \( = \mathop {\lim }\limits_{x \to  - \infty } \frac{1}{x}.\left( {\mathop {\lim }\limits_{x \to  - \infty } 1 - \mathop {\lim }\limits_{x \to  - \infty } \frac{2}{x}} \right) = 0.\left( {1 - 0} \right) = 0\).

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết