bài 1: tìm x, biết:
\(\sqrt{8x}-\sqrt{200x}+5\sqrt{x}=-20\)
\(3\sqrt{5x}-\sqrt{75x}+4\sqrt{x}=10\)
a, \(\sqrt{x+8+2\sqrt{x+7}}+\sqrt{x+1-\sqrt{x+7}}=4\)
b,\(\sqrt{5x^2+14x+9}=5\sqrt{x+1}+\sqrt{x^2-8x-20}\)
\(a,ĐK:x\ge-7\\ PT\Leftrightarrow\sqrt{\left(\sqrt{x+7}+1\right)^2}+\sqrt{x+7-\sqrt{x+7}-6}=4\)
Đạt \(\sqrt{x+7}=a\ge0\)
\(PT\Leftrightarrow\sqrt{\left(a+1\right)^2}+\sqrt{a^2-a-6}=4\\ \Leftrightarrow a+1+\sqrt{a^2-a-6}=4\\ \Leftrightarrow\sqrt{a^2-a-6}=3-a\\ \Leftrightarrow a^2-a-6=a^2-6a+9\\ \Leftrightarrow5a=15\Leftrightarrow a=3\\ \Leftrightarrow\sqrt{x+7}=3\\ \Leftrightarrow x+7=9\\ \Leftrightarrow x=2\left(tm\right)\)
a.\(\sqrt{5x^2+14x+9}=5\sqrt{x+1}+\sqrt{x^2-8x-20}\)
b.\(\left(x+1\right)\left(x-3\right)+3\sqrt{x^2-x-3}=4\)
c. \(\sqrt{4x^2+x-1}=x+1\)
cứu với mọi ng ơi ☘
Bài 3.Tìm x để \(\sqrt{ }\) có nghĩa
a)\(\sqrt{\dfrac{3}{x+7}}\)
b)\(\sqrt{\dfrac{-2}{5-x}}\)
c)\(\sqrt{x^2-7x+10}\)
d)\(\sqrt{x^2-8x+10}\)
e)\(\sqrt{9x^2+1}\)
Tìm x để căn có nghĩa ak mn giúp e với ak
\(a,ĐK:\dfrac{3}{x+7}\ge0\Leftrightarrow x+7>0\left(3>0;x+7\ne0\right)\Leftrightarrow x>-7\\ b,ĐK:\dfrac{-2}{5-x}\ge0\Leftrightarrow5-x< 0\left(2-< 0;5-x\ne0\right)\Leftrightarrow x>5\\ c,ĐK:x^2-7x+10\ge0\Leftrightarrow\left(x-5\right)\left(x-2\right)\ge0\\ \Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x-5\ge0\\x-2\ge0\end{matrix}\right.\\\left\{{}\begin{matrix}x-5\le0\\x-2\le0\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x\ge5\\x\le2\end{matrix}\right.\)
\(d,ĐK:x^2-8x+10\ge0\Leftrightarrow\left(x-4-\sqrt{6}\right)\left(x-4+\sqrt{6}\right)\ge0\\ \Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x-4-\sqrt{6}\ge0\\x-4+\sqrt{6}\ge0\end{matrix}\right.\\\left\{{}\begin{matrix}x-4-\sqrt{6}\le0\\x-4+\sqrt{6}\le0\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x\ge4+\sqrt{6}\\x\ge4-\sqrt{6}\end{matrix}\right.\\\left\{{}\begin{matrix}x\le4+\sqrt{6}\\x\le4-\sqrt{6}\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x\ge4+\sqrt{6}\\x\le4-\sqrt{6}\end{matrix}\right.\)
\(e,ĐK:9x^2+1\ge0\Leftrightarrow x\in R\left(9x^2+1\ge1>0\right)\)
a) \(ĐK:x+7>0\Leftrightarrow x>-7\)
b) \(ĐK:5-x< 0\Leftrightarrow x>5\)
c) \(ĐK:x^2-7x+10\ge0\)
\(\Leftrightarrow\left(x-2\right)\left(x-5\right)\ge0\)
\(\Leftrightarrow\left[{}\begin{matrix}x\ge5\\x\le2\end{matrix}\right.\)
d) \(ĐK:x^2-8x+10\ge0\)
\(\Leftrightarrow\left(x-4-\sqrt{6}\right)\left(x-4+\sqrt{6}\right)\ge0\)
\(\Leftrightarrow\left[{}\begin{matrix}x\ge4+\sqrt{6}\\x\le4-\sqrt{6}\end{matrix}\right.\)
e) Do \(9x^2+1\ge1>0\)
Nên biểu thức được xác định với mọi x
giải phương trình
a)\(\sqrt{x-1}+\sqrt{4x-4}-\sqrt{25x-25}+2=0\)
b)\(\sqrt{16x+16}-\sqrt{9x+9}+\sqrt{4x+4}+\sqrt{x+1}=16\)
c)\(\sqrt{4x+20}+\sqrt{x+5}-\dfrac{1}{3}\sqrt{9x+45}=4\)
d)\(\dfrac{1}{3}\sqrt{2x}-\sqrt{8x}+\sqrt{18x}-10=2\)
a) \(\sqrt{x-1}+\sqrt{4x-4}-\sqrt{25x-25}+2=0\) (ĐK: \(x\ge1\))
\(\Leftrightarrow\sqrt{x-1}+\sqrt{4\left(x-1\right)}-\sqrt{25\left(x-1\right)}+2=0\)
\(\Leftrightarrow\sqrt{x-1}+2\sqrt{x-1}-5\sqrt{x-1}+2=0\)
\(\Leftrightarrow-2\sqrt{x-1}=-2\)
\(\Leftrightarrow\sqrt{x-1}=\dfrac{2}{2}\)
\(\Leftrightarrow\sqrt{x-1}=1\)
\(\Leftrightarrow x-1=1\)
\(\Leftrightarrow x=2\left(tm\right)\)
b) \(\sqrt{16x+16}-\sqrt{9x+9}+\sqrt{4x+4}+\sqrt{x+1}=16\) (ĐK: \(x\ge-1\))
\(\Leftrightarrow\sqrt{16\left(x+1\right)}-\sqrt{9\left(x+1\right)}+\sqrt{4\left(x+1\right)}+\sqrt{x+1}=16\)
\(\Leftrightarrow4\sqrt{x+1}-3\sqrt{x+1}+2\sqrt{x+1}+\sqrt{x+1}=16\)
\(\Leftrightarrow4\sqrt{x+1}=16\)
\(\Leftrightarrow\sqrt{x+1}=4\)
\(\Leftrightarrow x+1=16\)
\(\Leftrightarrow x=15\left(tm\right)\)
a)\(\sqrt{4-5x}=12\) tìm x
b)\(\sqrt{10+\sqrt{3x}}=2+\sqrt{6}\)
c)\(\sqrt{4x+20}-3\sqrt{5+x}+\dfrac{4}{3}\sqrt{9x+45}=6\)
a) Ta có: \(\sqrt{4-5x}=12\)
\(\Leftrightarrow4-5x=144\)
\(\Leftrightarrow5x=-140\)
hay x=-28
b) Ta có: \(\sqrt{10+\sqrt{3x}}=2+\sqrt{6}\)
\(\Leftrightarrow\sqrt{3x}+10=10+4\sqrt{6}\)
\(\Leftrightarrow\sqrt{3x}=4\sqrt{6}\)
\(\Leftrightarrow3x=96\)
hay x=32
c) Ta có: \(\sqrt{4x+20}-3\sqrt{x+5}+\dfrac{4}{3}\sqrt{9x+45}=6\)
\(\Leftrightarrow2\sqrt{x+5}-3\sqrt{x+5}+\dfrac{4}{3}\cdot3\sqrt{x+5}=6\)
\(\Leftrightarrow x+5=4\)
hay x=-1
1.giải hệ phương trình
\(5x^2+6x+9=1x^2+2x^2+....+99x^8\)
\(5x^4+9y^3-3z^2+8x+3y=1x^2+2y^2+3z^4+.....+1999x^2\)
\(9y^8+6y^5+7x^3+9\sqrt[15]{x^4}=\sqrt[9]{x}+9\sqrt[10]{z}+......+888\sqrt[55]{x}\)
\(\frac{1}{\sqrt[9]{x}}+\frac{2}{\sqrt[8]{y}}+...+\frac{9}{\sqrt{x}}=\frac{1}{\sqrt[100]{x}-\sqrt[99]{y}-...-\sqrt{z}}\)
\(\sqrt[3]{2x^2}+.....+\sqrt[3]{23z^2}=\sqrt{5x}+\sqrt{7y}+\sqrt{11z}+...+\sqrt{97x}\)
Tìm x,y,z
THÁCH THỨC NGƯỜI THÔNG MINH GIẢI BÀI NÀY
Bài 1 : Cho biểu thức R = \(\left[\frac{2\sqrt{x}}{\sqrt{x}+3}+\frac{\sqrt{x}}{\sqrt{x}-3}-\frac{3\cdot\left(\sqrt{x}+3\right)}{x-9}\right]:\left(\frac{2\sqrt{x}-2}{\sqrt{x}-3}-1\right)\)
a/ Rút gọn R
b/ Tìm các giá trị của x để R < -1
Bài 2 : Cho \(\sqrt{x^2-5x+14}-\sqrt{x^2-5x+10}=2\)Tính giá trị biểu thức M =\(\sqrt{x^2-5x+14}+\sqrt{x^2-5x+10}\)
Bài 3 : Tìm GTNN của : Q = \(\sqrt{x^2+4x+4}+\sqrt{x^2-4x+4}\)
\(R=\left[\frac{2\sqrt{x}}{\sqrt{x}+3}+\frac{\sqrt{x}}{\sqrt{x}-3}-\frac{3\left(\sqrt{x}+3\right)}{x-9}\right]:\left(\frac{2\sqrt{x}-2}{\sqrt{x}-3}-1\right)\)
a/ \(R=\left[\frac{2\sqrt{x}}{\sqrt{x}+3}+\frac{\sqrt{x}}{\sqrt{x}-3}-\frac{3\left(\sqrt{x}+3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt[]{x-3}\right)}\right]:\left(\frac{2\sqrt{x}-2-\sqrt{x}+3}{\sqrt{x}-3}\right)\)
=> \(R=\left[\frac{2\sqrt{x}}{\sqrt{x}+3}+\frac{\sqrt{x}}{\sqrt{x}-3}-\frac{3}{\sqrt[]{x-3}}\right]:\frac{\sqrt{x}+1}{\sqrt{x}-3}\)
=> \(R=\left[\frac{2\sqrt{x}}{\sqrt{x}-3}+1\right]:\frac{\sqrt{x}+1}{\sqrt{x}-3}\)
=> \(R=\left[\frac{2\sqrt{x}+\sqrt{x}-3}{\sqrt{x}-3}\right].\frac{\sqrt{x}-3}{\sqrt{x}+1}\)
=> \(R=\frac{3\sqrt{x}-3}{\sqrt{x}-3}.\frac{\sqrt{x}-3}{\sqrt{x}+1}=\frac{3\left(\sqrt{x}-1\right)}{\sqrt{x}+1}\)
b/ Để R<-1 => \(\frac{3\left(\sqrt{x}-1\right)}{\sqrt{x}+1}< -1\)
<=> \(3\sqrt{x}-3< -\sqrt{x}-1\)
<=> \(4\sqrt{x}< 2\)=> \(\sqrt{x}< \frac{1}{2}\) => \(-\frac{1}{4}< x< \frac{1}{4}\)
Chỗ => R = \(\left(\frac{2\sqrt{x}}{\sqrt{x}-3}+1\right):\frac{\sqrt{x}+1}{\sqrt{x}-3}\) là sao vậy ạ?
Thì \(\frac{\sqrt{x}}{\sqrt{x}-3}-\frac{3}{\sqrt{x}-3}=\frac{\sqrt{x}-3}{\sqrt{x}-3}=1\)
giải phương trình :
a,\(\sqrt{5x^2+14x+9}-5\sqrt{x+1}=\sqrt{x^2-x-2}\)
b, \(x^2-8x+17=3\sqrt{x^3-7x+6}\)
c, \(x^2+5x+2=4\sqrt{x^3+3x^2+x-1}\)
Giải phương trình:
\(1,\sqrt[3]{5x+7}-\sqrt{5x-12}=1\)
\(2,\sqrt{x^2+x-5}+\sqrt{x^2+8x-4}=5\)
\(3,\sqrt[3]{x+1}+\sqrt[3]{3x+1}=\sqrt[3]{x-1}\)