Cho hàm số y = cos x + cos x − π 3 . Gọi M và m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số. Tìm M 2 + m 2 .
A. 6
B. 8
C. 0
D. 2
Tính:F=Cos(π/4+α) x cos(π/4-α)
G=Sin(π/3+α) x cos(π/3-α)
H=cos(π/2-α) x sin(π/2+α)
I=sin(π/4+α) - cos(π/4-α)
K=cos(π/6-x) - sin(π/3+x)
Cho hàm số y = cos 2 x .
a) Chứng minh rằng cos 2 x + k π = cos 2 x với mọi số nguyên k. Từ đó vẽ đồ thị (C) của hàm số y = cos 2 x .
b) Viết phương trình tiếp tuyến của đồ thị (C) tại điểm có hoành độ x = π / 3 .
c) Tìm tập xác định của hàm số : z = 1 - cos 2 x 1 + cos 2 2 x
a) + Hàm số y = cos x có chu kì 2π.
Do đó: cos 2.(x + kπ) = cos (2x + k2π) = cos 2x.
⇒ Hàm số y = cos 2x cũng tuần hoàn với chu kì π.
Từ đó suy ra
b. y = f(x) = cos 2x
⇒ y’ = f’(x) = (cos 2x)’ = -(2x)’.sin 2x = -2.sin 2x.
⇒ Phương trình tiếp tuyến của đồ thị (C) tại điểm có hoành độ x = π/3 là:
c. Ta có: 1 – cos 2x = 2.sin2x ≥ 0.
Và 1 + cos22x > 0; ∀ x
⇒ luôn xác định với mọi x ∈ R.
Tìm tập xác định hàm số y= √ 4 π 2 − x 2 cos x
Trong các hàm số sau, có bao nhiêu hàm số là hàm chẵn trên tập xác định của nó?
y = cot 2x; y = cos(x + π); y = 1 – sin x; y = tan2016x
A. 1.
B. 2
C. 3
D. 4
Đáp án B
+ Xét hàm y = f(x) = cos (x + π)
TXĐ: D = R
Với mọi x ∈ D, ta có: -x ∈ D và f(-x) = cos (-x + π) = -cos x = cos (x + π) = f(x)
Do đó y = cos (x + π) là hàm số chẵn .
+ Xét hàm y = g(x) = tan2016x
TXĐ: D = R\{π/2 + kπ, k ∈ Z}
Với mọi x ∈ D, ta có: -x ∈ D và g(-x) = tan2016(-x) = (-tan x)2016 = tan2016x = g(x)
Do đó: y = tan2016x là hàm chẵn trên tập xác định của nó.
+Xét hàm y = cot2x
f(-x) = cot(-2x) = - cot 2x = -f(x) nên đây là hàm số lẻ.
+ Xét hàm số y = 1-sinx
f(-x) = 1- sin(-x) = 1+ sin x
Nên hàm số không chẵn không lẻ
Trong các hàm số sau, có bao nhiêu hàm số là hàm chẵn trên tập xác định của nó?
y = c o t 2 x ; y = cos ( x + π ) ; y = 1 - sinx ; y = tan 2016 x
A. 1
B. 2
C. 3
D. 4
+ Xét hàm y = f x = cos x + π
TXĐ: D= R
Với mọi x ∈ D , ta có: − x ∈ D và
f − x = cos − x + π = − cos x = cos x + π = f x
Do đó y = cos x + π là hàm số chẵn trên R.
+ Xét hàm y = g x = tan 2016 x
TXĐ: D = ℝ \ π 2 + k π , k ∈ ℤ
Với mọi x ∈ D , ta có: − x ∈ D và
g − x = tan 2016 − x = − tan x 2016 = tan 2016 x = g x
Do đó: y = tan 2016 x là hàm chẵn trên tập xác định của nó
Chọn đáp án B.
Trong các hàm số sau, có bao nhiêu hàm số là hàm chẵn trên tập xác định của nó: y = c o t 2 x , y = cos ( x + π ) , y = 1 - sinx , y = tan 2016 x
A. 2
B. 1
C. 4
D. 3
Trong các hàm số sau, có bao nhiêu hàm số là hàm chẵn trên tập xác định của nó?
y = cot 2x; y = cos ( x + π ) ; y=10 - sinx; y= 100 tan100x.
A. 1
B. 2
C.3
D. 4
Do đó: y= 100 tan100x là hàm chẵn trên tập xác định của nó.
Đáp án B
Số nghiệm của phương trình sin x . sin 2 x + 2 . sin x . cos 2 x + sin x + cos x sin x + cos x = 3 . cos 2 x trong khoảng - π , π là:
A. 2
B. 4
C. 3
D. 5
Tìm x biết ba số cos(x-π/4); sinx; cos(x+π/4) là 3 số hạng liên tiếp của cấp số nhân
Để \(cos\left(x-\dfrac{\Omega}{4}\right);sinx;cos\left(x+\dfrac{\Omega}{4}\right)\) là ba số hạng liên tiếp của cấp số nhân thì \(sin^2x=cos\left(x-\dfrac{\Omega}{4}\right)\cdot cos\left(x+\dfrac{\Omega}{4}\right)\)
=>\(sin^2x=\sqrt{2}\left(cosx-sinx\right)\cdot\sqrt{2}\left(cosx+sinx\right)\)
=>\(sin^2x=2cos^2x-2sin^2x\)
=>\(3\cdot sin^2x=2\cdot cos^2x\)
=>\(\dfrac{sin^2x}{cos^2x}=\dfrac{2}{3}\)
=>\(tan^2x=\dfrac{2}{3}\)
=>\(\left[{}\begin{matrix}tanx=\dfrac{\sqrt{6}}{3}\\tanx=-\dfrac{\sqrt{6}}{3}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=arctan\left(\dfrac{\sqrt{6}}{3}\right)+k\Omega\\x=arctan\left(-\dfrac{\sqrt{6}}{3}\right)+k\Omega\end{matrix}\right.\)
Dựa vào đồ thị y = cos x trên [-π,π] hãy chỉ ra các khoảng giá trị x mà cos x >0 , cos x < 0