PB

Cho hàm số y = cos x + cos x − π 3 . Gọi Mm lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số. Tìm M 2 + m 2 .

A. 6

B. 8

C. 0

D. 2

CT
13 tháng 1 2018 lúc 11:37

Đáp án A.

Điều kiện  x ∈ ℝ

  y = cos x + cos x − π 3 = cos x + cos x . cos π 3 + sin x . sin π 3 = cos x + 1 2 cos x + 3 2 sin x

= 3 2 cos x + 3 2 sin x

Cách 1: y = 3 3 2 cos x + 1 2 sin x = 3 sin x + π 3 Suy ra  − 3 ≤ y ≤ 3

Vậy   m = − 3 ; M = 3 và do đó  M 2 + m 2 = 6

Cách 2:

Áp dụng bất đẳng thức Bunyakovsky ta có:

  3 2 cos x + 3 2 sin x 2 ≤ 3 2 2 + 3 2 2 cos x 2 + sin x 2

  ⇔ 3 2 cos x + 3 2 sin x 2 ≤ 3 ⇔ − 3 ≤ y ≤ 3

  ⇒ M = 3 khi   2 3 cos x = 2 3 sin x 3 2 cos x + 3 2 sin x = 3

Tương tự ta có  m = − 3    khi   2 3 cos x = 2 3 sin x 3 2 cos x + 3 2 sin x = − 3

⇒ M 2 + m 2 = 3 2 + − 3 2 = 6

Vậy ta chọn A.

Bình luận (0)

Các câu hỏi tương tự
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết