Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6


Những câu hỏi liên quan
HN
Xem chi tiết
HP
7 tháng 8 2021 lúc 14:53

a, ĐK: \(x\le-1,x\ge3\)

\(pt\Leftrightarrow2\left(x^2-2x-3\right)+\sqrt{x^2-2x-3}-3=0\)

\(\Leftrightarrow\left(2\sqrt{x^2-2x-3}+3\right).\left(\sqrt{x^2-2x-3}-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x^2-2x-3}=-\dfrac{3}{2}\left(l\right)\\\sqrt{x^2-2x-3}=1\end{matrix}\right.\)

\(\Leftrightarrow x^2-2x-3=1\)

\(\Leftrightarrow x^2-2x-4=0\)

\(\Leftrightarrow x=1\pm\sqrt{5}\left(tm\right)\)

Bình luận (0)
HP
7 tháng 8 2021 lúc 15:05

b, ĐK: \(-2\le x\le2\)

Đặt \(\sqrt{2+x}-2\sqrt{2-x}=t\Rightarrow t^2=10-3x-4\sqrt{4-x^2}\)

Khi đó phương trình tương đương:

\(3t-t^2=0\)

\(\Leftrightarrow\left[{}\begin{matrix}t=0\\t=3\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{2+x}-2\sqrt{2-x}=0\\\sqrt{2+x}-2\sqrt{2-x}=3\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}2+x=8-4x\\2+x=17-4x+12\sqrt{2-x}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{6}{5}\left(tm\right)\\5x-15=12\sqrt{2-x}\left(1\right)\end{matrix}\right.\)

Vì \(-2\le x\le2\Rightarrow5x-15< 0\Rightarrow\left(1\right)\) vô nghiệm

Vậy phương trình đã cho có nghiệm \(x=\dfrac{6}{5}\)

Bình luận (0)
HP
7 tháng 8 2021 lúc 15:23

c, ĐK: \(0\le x\le9\)

Đặt \(\sqrt{9x-x^2}=t\left(0\le t\le\dfrac{9}{2}\right)\)

\(pt\Leftrightarrow9+2\sqrt{9x-x^2}=-x^2+9x+m\)

\(\Leftrightarrow-\left(-x^2+9x\right)+2\sqrt{9x-x^2}+9=m\)

\(\Leftrightarrow-t^2+2t+9=m\)

Khi \(m=9,pt\Leftrightarrow-t^2+2t=0\Leftrightarrow\left[{}\begin{matrix}t=0\\t=2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}9x-x^2=0\\9x-x^2=4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\left(tm\right)\\x=9\left(tm\right)\\x=\dfrac{9\pm\sqrt{65}}{2}\left(tm\right)\end{matrix}\right.\)

Phương trình đã cho có nghiệm khi phương trình \(m=f\left(t\right)=-t^2+2t+9\) có nghiệm

\(\Leftrightarrow minf\left(t\right)\le m\le maxf\left(t\right)\)

\(\Leftrightarrow-\dfrac{9}{4}\le m\le10\)

Bình luận (0)
TL
Xem chi tiết
AH
6 tháng 1 2023 lúc 19:12

Bài 9:

Không, vì $x+2=0$ có nghiệm duy nhất $x=-2$ còn $\frac{x}{x+2}=0$ ngay từ đầu đkxđ đã là $x\neq -2$ (cả 2 pt không có cùng tập nghiệm)

Bình luận (0)
AH
6 tháng 1 2023 lúc 19:14

Bài 8:

a. Khi $m=2$ thì pt trở thành:

$(2^2-9)x-3=2$

$\Leftrightarrow -5x-3=2$

$\Leftrightarrow -5x=5$

$\Leftrightarrow x=-1$ 

b.

Khi $m=3$ thì pt trở thành:

$(3^2-9)x-3=3$

$\Leftrightarrow 0x-3=3$

$\Leftrightarrow 0=6$ (vô lý)

c. Khi $m=3$ thì pt trở thành:

$[(-3)^2-9]x-3=-3$

$\Leftrightarrow 0x-3=-3$ (luôn đúng với mọi $x\in\mathbb{R}$)

Vậy pt vô số nghiệm thực.

Bình luận (0)
FM
Xem chi tiết
KS
9 tháng 2 2023 lúc 12:42

a) m = 4 thì PT trở thành:

\(2.\left(4^2-9\right)x+4-3=0\)

\(\Leftrightarrow10x+1=0\)

\(\Leftrightarrow x=-\dfrac{1}{10}\)

Vậy PT có nghiệm \(x=-\dfrac{1}{10}\)

b) Đặt nghiệm của PT là \(x_0\)

\(\Rightarrow2\left(m^2-9\right)x_0+m-3=\forall x_0\)

\(\Leftrightarrow2\left(m-3\right)\left(m+3\right)x_0+m-3=0\forall x_0\)

\(\Leftrightarrow\left[2\left(m+3\right)+x_0\right]\left(m-3\right)=0\forall x_0\)

\(\Rightarrow m-3=0\\ \Leftrightarrow m=3\)

Vậy m = 3 thì phương trình nghiệm đúng với mọi x

Bình luận (0)
LT
Xem chi tiết
NT
3 tháng 1 2021 lúc 10:01

Bài 1: 

a) Ta có: \(P=\dfrac{\sqrt{x}+1}{\sqrt{x}-2}+\dfrac{2\sqrt{x}}{\sqrt{x}+2}+\dfrac{2+5\sqrt{x}}{4-x}\)

\(=\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-2\right)\cdot\left(\sqrt{x}+2\right)}+\dfrac{2\sqrt{x}\left(\sqrt{x}-2\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}-\dfrac{2+5\sqrt{x}}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)

\(=\dfrac{x+3\sqrt{x}+2+2x-4\sqrt{x}-2-5\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)

\(=\dfrac{3x-6\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)

\(=\dfrac{3\sqrt{x}\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)

\(=\dfrac{3\sqrt{x}}{\sqrt{x}+2}\)

b)

ĐKXĐ: \(\left\{{}\begin{matrix}x\ge0\\x\ne4\end{matrix}\right.\)

Để P=2 thì \(\dfrac{3\sqrt{x}}{\sqrt{x}+2}=2\)

\(\Leftrightarrow3\sqrt{x}=2\left(\sqrt{x}+2\right)\)

\(\Leftrightarrow3\sqrt{x}=2\sqrt{x}+4\)

\(\Leftrightarrow3\sqrt{x}-2\sqrt{x}=4\)

\(\Leftrightarrow\sqrt{x}=4\)

hay x=16(nhận)

Vậy: Để P=2 thì x=16

Bình luận (0)
HP
3 tháng 1 2021 lúc 11:24

2.

a, \(m=3\), hệ phương trình trở thành:

\(\left\{{}\begin{matrix}x+3y=9\\3x-3y=4\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}4x=13\\y=\dfrac{3x-4}{3}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{13}{4}\\y=\dfrac{23}{12}\end{matrix}\right.\)

b, \(\left(x;y\right)=\left(-1;3\right)\) là nghiệm của hệ, suy ra:

\(\left\{{}\begin{matrix}-1+3m=9\\-m-9=4\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m=\dfrac{10}{3}\\m=-13\end{matrix}\right.\)

\(\Rightarrow\) Không tồn tại giá trị m thỏa mãn

Bình luận (0)
NH
Xem chi tiết
NT
12 tháng 3 2022 lúc 7:53

a: Khi m=2 thì pt sẽ là \(-x-5=0\)

hay x=-5

b: Để phương trình có nghiệm duy nhất thì m-3<>0

hay m<>3

Bình luận (0)
MT
Xem chi tiết
PB
Xem chi tiết
CT
25 tháng 11 2017 lúc 17:20

Đáp án cần chọn là: A

Bình luận (0)
H24
Xem chi tiết
NT
14 tháng 5 2023 lúc 23:03

a: Δ=(2m-2)^2-4(m^2-9)

=4m^2-8m+4-4m^2+36=-8m+40

Để pt có nghiệm kép thì -8m+40=0

=>m=5

=>x^2-2(5-1)x+5^2-9=0

=>x^2-8x+16=0

=>x=4

b: Để PT có 2 nghiệm thì -8m+40>=0

=>m<=5

\(M=\dfrac{\left(x_1+x_2\right)^2-2x_1x_2}{2}-\left(x_1+x_2\right)\)

\(=\dfrac{\left(2m-2\right)^2-2\left(m^2-9\right)}{2}-\left(2m-2\right)\)

\(=2\left(m-1\right)^2-m^2+9-2m+2\)

=2m^2-4m+2-m^2-2m+11

=m^2-6m+13

=(m-3)^2+4>=4

Dấu = xảy ra khi m=3

Bình luận (0)
DS
Xem chi tiết
NH
19 tháng 6 2021 lúc 16:21

Bình luận (0)
NH
19 tháng 6 2021 lúc 16:25

undefined

Bình luận (0)
MT
Xem chi tiết