Trong mặt phẳng với hệ trục tọa độ Oxy cho đường tròn C 1 : x 2 + y 2 − 2 x − 2 y − 2 = 0 và C 2 : x 2 + y 2 + 12 x − 16 y = 0. Phép đồng dạng F tỉ số k biến C 1 thành C 2 Tìm k ?
A. k = 1 5
B. k= -6
C. k= 2
D. k= 5
trong mặt phẳng Oxy, cho hai đường tròn (C) : \(\left(x-1\right)^2+\left(y-1\right)^2=1\). Lập phương trình đường tròn (C') tiếp xúc với 2 trục tọa độ và tiếp xúc ngoài với (C)
Trong mặt phẳng tọa độ Oxy, cho đường tròn C có phương trình : x^2 + y^2 - 12x - 4y + 36 = 0. Viết phương trình đường tròn C1 tiếp xúc với hai trục tọa độ Ox, Oy đồng thời tiếp xúc với C.
Trong mặt phẳng với hệ trục tọa độ Oxy, cho đường tròn (C) có phương trình x - 2 2 + y + 2 2 = 4 và đường thẳng d : 3 x + 4 y + 7 = 0 . Gọi A B, là các giao điểm của đường thẳng d với đường tròn (C) . Tính độ dài dây cung AB.
A. AB = 3 .
B. AB = 2 5 .
C. AB = 2 3 .
D. AB = 4 .
Trong mặt phẳng với hệ trục tọa độ Oxy cho đường tròn (C): x 2 + y 2 − 2 x − 4 y + 2 = 0 . Phép đối xứng qua tâm O biến đường tròn (C) thành đường tròn nào trong các đường tròn có phương trình sau:
A. ( x − 1 ) 2 + ( y − 2 ) 2 = 3
B. ( x + 2 ) 2 + ( y + 1 ) 2 = 3
C. ( x + 1 ) 2 + ( y + 2 ) 2 = 3
D. ( x + 1 ) 2 + ( y − 2 ) 2 = 3
Đáp án C
(C) có tâm I(1;2) bán kính R = 3
Đ O : I → I’(–1;–2)
Phương trình đường tròn (C’): x + 1 2 + y + 2 2 = 3
Trong mặt phẳng với hệ tọa độ Oxy, cho đường tròn (C): ( x + 1 ) 2 + ( y - 3 ) 2 = 4 . Phép tịnh tiến theo vectơ v → = 3 ; 2 biến đường tròn (C) thành đường tròn có phương trình nào dưới đây
A. ( x + 2 ) 2 + ( y + 5 ) 2 = 4
B. ( x - 1 ) 2 + ( y + 3 ) 2 = 4
C. ( x + 4 ) 2 + ( y - 1 ) 2 = 4
D. ( x - 2 ) 2 + ( y - 5 ) 2 = 4
Trong mặt phẳng với hệ trục tọa độ
Oxy. Cho đường tròn (C) có phương
trình: x - 1 2 + y - 5 2 = 4
và điểm I(2;-3). Gọi (C') là ảnh
của (C) qua phép vị V tâm I tỉ
số k=-2 Tìm phương trình của (C')
A. x - 4 2 + y + 19 2 = 16
B. x - 6 2 + y + 9 2 = 16
C. x + 4 2 + y - 19 2 = 16
D. x + 6 2 + y + 9 2 = 16
Trong không gian với hệ trục tọa độ Oxyz, mặt phẳng (Oxy) cắt mặt cầu S : x - 1 2 + y - 2 2 + z - 3 2 = 16 theo giao tuyến là đường tròn tâm H, bán kính r. Tìm tọa độ tâm H và bán kính r.
A. H 1 ; 2 ; 0 , r = 7
B. H 0 ; 0 ; 3 , r = 7
C. H 1 ; 2 ; 0 , r = 7
D. H 1 ; 2 ; 0 , r = 11
Trong mặt phẳng hệ trục tọa độ Oxy, cho tam giác ABC nội tiếp đường tròn tâm I; E (1/2;1/2) là trung điểm AB. H (4/5;-22/5) là tọa độ hình chiếu vuông góc của A lên CI. Ptdt BC : x+y-4=0. Tìm tọa độ A,B,C
Trong mặt phẳng với hệ tọa độ Oxy, cho điểm A (-1;1) và đường thẳng
d : x - y + 1 - √2 = 0 . Viết phương trình đường tròn (C) đi qua điểm A, gốc toạ độ O và tiếp xúc với đường thẳng d .
Trong mặt phẳng với hệ tọa độ Oxy, cho điểm A (-1;1) và đường thẳng
d : x - y + 1 - √2 = 0 . Viết phương trình đường tròn (C) đi qua điểm A, gốc toạ độ O và tiếp xúc với đường thẳng d .
Gọi \(I\) là tâm nằm trên đường trung trực \(OA\)
\(\Rightarrow IA=d\left(I,d\right)\Leftrightarrow\sqrt{\left(x_0+1\right)^2+x^2_0}=\dfrac{\left|-x_0+x_0+1-1\right|}{\sqrt{2}}\Leftrightarrow\left[{}\begin{matrix}x_0=0\\x_0=-1\end{matrix}\right.\)
Khi đó: \(\left\{{}\begin{matrix}x_0=0\Rightarrow r=1\\x_0=-1\Rightarrow r=1\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x^2+\left(y-1\right)^2=1\\\left(x+1\right)^2+y^2=1\end{matrix}\right.\)