G(x)=-2x+5
5 Cho đa thức f(x)=x^5-4x^4-2x^2-7; g(x)=-2x^5+6x^4-2x^2+6
Tính f(x)+g(x); f(x)-g(x)
b) Cho đa thức f(x)=5x^4+7x^3-6x^2+3x-7 ; g(x)=-4x^4+2x^3-5x^2+4x+5
Tính f(x)+g(x) ; f(x)-g(x)
a)f(x)+g(x)=\(x^5-4x^4-2x^2-7-2x^5+6x^4-2x^2+6.\)
=\(-x^5+2x^4-4x^2-1\)
f(x)-g(x)=\(x^5-4x^4-2x^2-7+2x^5-6x^4+2x^2-6\)
=\(3x^5-10x^4-13\)
b)f(x)+g(x)=\(5x^4+7x^3-6x^2+3x-7-4x^4+2x^3-5x^2+4x+5\)
=\(x^4+9x^3-11x^2+7x-2\)
f(x)-g(x)=\(5x^4+7x^3-6x^2+3x-7+4x^4-2x^3+5x^2-4x-5\)
=\(9x^4+5x^3-x^2-x-12\)
a )
\(f\left(x\right)+g\left(x\right)=x^5-4x^4-2x^2-7+-2x^5+6x^4-2x^2+6\)
\(\Rightarrow f\left(x\right)+g\left(x\right)=\left(x^5-2x^5\right)+\left(6x^4-4x^4\right)-\left(2x^2+2x^2\right)+\left(6-7\right)\)
\(\Rightarrow f\left(x\right)+g\left(x\right)=-x^5+2x^4-4x^2-1\)
\(f\left(x\right)-g\left(x\right)=x^5-4x^4-2x^2-7-\left(-2x^5+6x^4-2x^2+6\right)\)
\(\Rightarrow f\left(x\right)-g\left(x\right)=x^5-4x^4-2x^2-7+2x^5-6x^4+2x^2-6\)
\(\Rightarrow f\left(x\right)-g\left(x\right)=\left(x^5+2x^5\right)-\left(4x^4+6x^4\right)+\left(2x^2-2x^2\right)-\left(6+7\right)\)
\(\Rightarrow f\left(x\right)-g\left(x\right)=3x^5-10x^4-13\)
Cho : f(x)=x5+2x2-1/2x2-1/2x-5
g(x)=-x5-3x2+1/2x+1
a) Tính f(x)+g(x)
f(x)-g(x)
b) cm: f(x)+g(x) không có nghiệm
Cho : f(x)=x5+2x2-1/2x2-1/2x-5
g(x)=-x5-3x2+1/2x+1
a) Tính f(x)+g(x)
f(x)-g(x)
b) cm: f(x)+g(x) không có nghiệm
Ai giúp với
a) f(x) + g(x) = (x5 + 2x2 - 1/2x2 - 1/2x - 5) + (-x5 - 3x2 + 1/2x + 1)
= x5 + 2x2 - 1/2x2 - 1/2x - 5 - x5 - 3x2 + 1/2x + 1
= (x5 - x5) + (2x2 - 1/2x2 - 3x2) + (-1/2x + 1/2x) + (-5 + 1)
= -3/2x2 - 4
f(x) - g(x) = (x5 + 2x2 - 1/2x2 - 1/2x - 5) - (-x5 - 3x2 + 1/2x + 1)
= x5 + 2x2 - 1/2x2 - 1/2x - 5 + x5 + 3x2 - 1/2x - 1
= (x5 + x5) + (2x2 - 1/2x2 + 3x2) + (-1/2 - 1/2x) + (-5 - 1)
= 2x5 + 9/2x2 - x - 6
b) f(x) + g(x) = -3/2x2 - 4
Ta có:
-3/2x2 > 0
=> -3/2x2 - 4 > 1 > 0
=> f(x) + g(x) vô nghiệm
a, ta có:
\(f\left(x\right)=x^5+2x^2-\frac{1}{2}x^2-5\)
\(=x^5+\frac{3}{2}x^2-\frac{1}{2}x-5\)
\(f\left(x\right)+g\left(x\right)=-\frac{3}{2}x^2-4\)(t lm tắt nhé)
\(f\left(x\right)-g\left(x\right)=2x^5+\frac{9}{2}-x-6\)
b,Để f(x)+g(x) có nghiệm thì
\(f\left(x\right)+g\left(x\right)=-\frac{3}{2}x^2-4=0\)
\(\Rightarrow-\frac{3}{2}x^2=4\)
\(\Rightarrow x^2=-2\)(k tồn tại)
vậy f(x)+g(x) k có nghiệm.
5 Cho đa thức f(x)=x^5-4x^4-2x^2-7; g(x)=-2x^5+6x^4-2x^2+6
Tính f(x)+g(x); f(x)-g(x)
b) Cho đa thức f(x)=5x^4+7x^3-6x^2+3x-7 ; g(x)=-4x^4+2x^3-5x^2+4x+5
Tính f(x)+g(x) ; f(x)-g(x)
Giups mình với mình sắp phải nộp rùi các bạn ơi
\(f\left(x\right)=x^5-4x^4-2x^2-7\)
\(g\left(x\right)=-2x^5+6x^4-2x^2+6\)
\(f\left(x\right)+g\left(x\right)=-x^5+2x^4-4x^2-1\)
\(f\left(x\right)-g\left(x\right)=3x^5-10x^4-13\)
Tính(x)+g(x)và f(x)-f(x)với:
a)f(x)=x^5-3x^2+x^3-x^2-2x+5;g(x0=x^2-3x+1+x^2-x^4+X^5
b)f(x)=x^7-3x^2-x^5+x^4-x^2+2x-7;g(x)=x-2x^2+x^4-X^5-x^7-4x^2-1
bai 1: cho cac da thuc
f(x)= x^5-3x^2+7x^4-x^5+2x^2-9x^3+x^2-1/4x+2x-3
g(x)=5x^4-x^5+1/2x^4+x^5+x^2-4x^4-2x^3+3x^2+x^3-1/4
a, thu gon va sap xep cac da thuc tren theo luy thua giam dancua ien
b,tinh f(1);f(-1); g(1); g(-1)
c,tinh f(x)+g(x);f(x)-g(x)
bai 1: cho cac da thuc
f(x)= x^5-3x^2+7x^4-x^5+2x^2-9x^3+x^2-1/4x+2x-3
g(x)=5x^4-x^5+1/2x^4+x^5+x^2-4x^4-2x^3+3x^2+x^3-1/4
a, thu gon va sap xep cac da thuc tren theo luy thua giam dancua ien
b,tinh f(1);f(-1); g(1); g(-1)
c,tinh f(x)+g(x);f(x)-g(x)
a)\(f\left(x\right)=x^5-3x^2+7x^4-x^5+2x^2-9x^3+x^2-\frac{1}{4}x+2x-3\)
\(=x^5-x^5+7x^4-9x^3-3x^2+2x^2+x^2-\frac{1}{4}x+2x-3\)
\(=7x^4-9x^3+\frac{7}{4}x-3\)
\(g\left(x\right)=5x^4-x^5+\frac{1}{2}x^2+x^5+x^2-4x^4-2x^3+3x^2+x^3-\frac{1}{4}\)
\(=-x^5+x^5+5x^4-4x^4-2x^3+x^3+\frac{1}{2}x^2+x^2+3x^2-\frac{1}{4}\)
\(=x^4-x^3+\frac{9}{2}x^2-\frac{1}{4}\)
b)\(f\left(1\right)=7.1^4-9.1^3+\frac{7}{4}.1-3=7-9+\frac{7}{4}-3=-\frac{13}{4}\)
\(f\left(-1\right)=7.\left(-1\right)^4-9.\left(-1\right)^3+\frac{7}{4}.\left(-1\right)-3=7+9-\frac{7}{4}-3=\frac{45}{4}\)
\(g\left(1\right)=1^4-1^3+\frac{9}{2}.1^2-\frac{1}{4}=1-1+\frac{9}{2}-\frac{1}{4}=\frac{17}{4}\)
\(g\left(-1\right)=\left(-1\right)^4-\left(-1\right)^3+\frac{9}{2}.\left(-1\right)^2-\frac{1}{4}=1+1+\frac{9}{2}-\frac{1}{4}=\frac{25}{4}\)
c) Ta có: f(x)+g(x)=\(7x^4-9x^3+\frac{7}{4}x-3+x^4-x^3+\frac{9}{2}x^2-\frac{1}{4}=7x^4+x^4-9x^3-x^3+\frac{9}{2}x^2+\frac{7}{4}x-3-\frac{1}{4}\)
\(=8x^4-10x^3+\frac{9}{2}x^2+\frac{7}{4}x-\frac{13}{4}\)
f(x)-g(x) =\(7x^4-9x^3+\frac{7}{4}x-3-x^4+x^3-\frac{9}{2}x^2+\frac{1}{4}=7x^4-x^4-9x^3+x^3-\frac{9}{2}x^2+\frac{7}{4}x-3+\frac{1}{4}\)
\(=6x^4-8x^3-\frac{9}{2}x^2+\frac{7}{4}x-\frac{11}{4}\)
2. cho đa thức
f(x)=\(2x^5-4x^4+3x^3-x^2+5x-1\)
g(x)= \(-x^5+2x^4-3x^3-x^2-2x+7\)
h(x)=\(x^5-2x^4-2x^2-x-3\)
tính
a, f(x)+g(x)
b, f(x)+h(x)
c, g(x)+h(x)
d, f(x)-g(x)
e, f(x)-h(x)
h, g(x)-h(x)
f, f(x)+g(x)+h(x)
g, f(x)+g(x)-h(x)
n, f(x)-g(x)+h(x)
m,f(x)-g(x)-h(x)
a. f(x)+g(x)=2x5−4x4+3x3−x2+5x−1+(−x5+2x4−3x3−x2−2x+7)
=2x5-x5-4x4+2x4+3x3-3x3-x2-x2+5x-2x-1+7
=x5-2x4-2x2+3x+6
b. f(x)+h(x)=2x5−4x4+3x3−x2+5x−1+x5−2x4−2x2−x−3
=2x5+x5-4x4-2x4+3x3-x2-2x2+5x-x-1-3
=3x5-6x4+3x3-3x2+6x-4
c. g(x)+h(x)=−x5+2x4−3x3−x2−2x+7+x5−2x4−2x2−x−3
=-x5+x5+2x4-2x4-3x3-x2-2x2-2x-x+7-3
=-3x3-3x2-3x+4
d. f(x)-g(x)=2x5−4x4+3x3−x2+5x−1-(−x5+2x4−3x3−x2−2x+7)
=2x5−4x4+3x3−x2+5x−1-x5-2x4+3x3+x2+2x-7
=2x5-x5-4x4-2x4+3x3+3x3-x2+x2+5x+2x-1-7
=x5-6x4+6x3+7x-8
e. f(x)-h(x)=2x5−4x4+3x3−x2+5x−1-(x5−2x4−2x2−x−3)
=2x5−4x4+3x3−x2+5x−1-x5+2x4+2x2+x+3
=2x5-x5-4x4+2x4+3x3-x2+2x2+5x+x-1+3
=x5-2x4+3x3+x2+6x-4
h. g(x)-h(x)=−x5+2x4−3x3−x2−2x+7-(x5−2x4−2x2−x−3)
=−x5+2x4−3x3−x2−2x+7-x5+2x4+2x2+x+3
=-x5-x5+2x4+2x4-3x3-x2+2x2-2x+x+7+3
=-2x5+4x4-3x3+x2-x+10
f. f(x)+g(x)+h(x)=2x5−4x4+3x3−x2+5x−1+(−x5+2x4−3x3−x2−2x+7)+x5−2x4−2x2−x−3
=2x5-x5+x5-4x4+2x4-2x4+3x3-3x3-x2-x2-2x2+5x-2x-x-1+7-3
=2x5-4x4-4x2+2x+3
g. f(x)+g(x)-h(x)=2x5−4x4+3x3−x2+5x−1+(−x5+2x4−3x3−x2−2x+7)-(x5−2x4−2x2−x−3)
=2x5−4x4+3x3−x2+5x−1+(−x5+2x4−3x3−x2−2x+7)-x5+2x4+2x2+x+3
=2x5-x5-x5-4x4+2x4+2x4+3x3-3x3-x2-x2+2x2+5x-2x+x-1+7+3
=4x+9
n. f(x)-g(x)+h(x)=2x5−4x4+3x3−x2+5x−1-(−x5+2x4−3x3−x2−2x+7)+x5−2x4−2x2−x−3
=2x5−4x4+3x3−x2+5x−1-x5-2x4+3x3+x2+2x-7+x5−2x4−2x2−x−3
=2x5-x5+x5-4x4-2x4-2x4+3x3+3x3-x2+x2-2x2+5x+2x-x-1-7-3
=2x5-8x4+6x3-2x2+6x-11
m. f(x)-g(x)-h(x)=2x5−4x4+3x3−x2+5x−1-(−x5+2x4−3x3−x2−2x+7)-(x5−2x4−2x2−x−3)
=2x5−4x4+3x3−x2+5x−1-x5-2x4+3x3+x2+2x-7-x5+2x4+2x2+x+3
=2x5-x5-x5-4x4-2x4+2x4+3x3+3x3-x2+x2+2x2+5x+2x+x-1-7+3
=-4x4+6x3+2x2+8x-5
Cho f(x)=\(x^5-2x^3-4x+5\) g(x)=\(2x^5+x-4x^3-8\) Tìm x để 2f(x)=g(x)
Cho đa thức :f(x)=3x^4-5+2x^5-6x^3+2x^2+4x
g(x)=3x-x^2+5-2x^5-3x^4+6x^3
a,Tính A(x)=f(x)+g(x)
b,Tìm x để A(x)=0
a) A(x) = f(x) + g(x)
= (3x4 - 5 + 2x5 - 6x3 + 2x2 + 4x) + (3x - x2 + 5 - 2x5 - 3x4 + 6x3)
= 3x4 - 5 + 2x5 - 6x3 + 2x2 + 4x + 3x - x2 + 5 - 2x5 - 3x4 + 6x3
= x2 + 7x
Vậy A(x) = x2 + 7x
b) Đặt A(x) = 0, ta có:
A(x) = x2 + 7x = 0
=> x(x + 7) = 0
\(\Rightarrow\left[{}\begin{matrix}x=0\\x+7=0\Rightarrow x=-7\end{matrix}\right.\)
Vậy nghiệm của A(x) là x = 0 hoặc x = -7