Xét dấu biểu thức:
a) f(x) = \(-3x^2+2x\)
b) g(x) = \(x^2-10x+25\)
c) h(x) = \(4x^2-4x+1\)
d) q(x) = ( 2x+3 ).( x- 5 )
Xét dấu các nhị thức f(x) = 3x + 2, g(x) = -2x + 5.
Bất phương trình nào sau đây là bất phương trình bậc nhất hai ẩn?
a) \(2x^2+3y>0\)
b) 2x + \(3y^2\le0\)
c) 2x + 3y > 0
d) \(2x^2-y^2+3x-2y< 0\)
e) 3y < 1
f) x - 2y \(\le1\)
g) x \(\le0\)
h) y > 0
i) 4(x-1) + 5(y-3) > 2x - 9
Bài 1. Liệt kê các phần tử của tập hợp sau:
a) A = {x Î N | x < 6} b) B = {x Î N | 1 < x £ 5}
c) C = {x Î Z , |x| £ 3} d) D = {x Î Z | x2 - 9 = 0}
e) E = {x Î R | (x - 1)(x2 + 6x + 5) = 0} f) F = {x Î R | x2 - x + 2 = 0}
g) G = {x Î N | (2x - 1)(x2 - 5x + 6) = 0} h) H = {x | x = 2k với k Î Z và -3 < k < 13}
i) I = {x Î Z | x2 > 4 và |x| < 10} j) J = {x | x = 3k với k Î Z và -1 < k < 5}
k) K = {x Î R | x2 - 1 = 0 và x2 - 4x + 3 = 0} l) L = {x Î Q | 2x - 1 = 0 hay x2 - 4 = 0
Cho f(x) = x^2 – 2x + 3, g(x) = mx – 8m + 2. Tìm m để f(x) > g(x) với mọi x∈R
cho 2 phương trình \(f\left(x\right)=2x^2-4x+5\) và \(g\left(x\right)=x^2+ax+b\). Tìm tất cả các giá trị của a,b biết GTNN của g(x) nhỏ hơn GTNN của f(x) là 8 đơn vị và đồ thị của hàm số trên có đúng 1 điểm chung
Giải các bất phương trình sau
a/ (x+1).(x-1).(3x-6)>0
b/ \(\dfrac{x+3}{x-2}\le0\)
c/ \(\dfrac{\left(2x-5\right).\left(x+2\right)}{-4x+3}\ge0\)
d/ \(\dfrac{2x-5}{3x+2}< \dfrac{3x+2}{2x-5}\)
e/ \(\dfrac{2x^2+x}{1-2x}\ge1-x\)
f/ \(\dfrac{\left(2+x\right)^5.\left(x+1\right).\left(3-x\right)^{11}}{\left(2-x\right).\left(1-x\right)^{20}}\le0\)
Giải các bất phương trình sau
a/ (x+1).(x-1).(3x-6)>0
b/ \(\dfrac{x+3}{x-2}\le0\)
c/ \(\dfrac{\left(2x-5\right).\left(x+2\right)}{-4x+3}\ge0\)
d/ \(\dfrac{2x-5}{3x+2}< \dfrac{3x+2}{2x-5}\)
e/ \(\dfrac{2x^2+x}{1-2x}\ge1-x\)
f/ \(\dfrac{\left(2+x\right)^5.\left(x+1\right).\left(3-x\right)^{11}}{\left(2-x\right).\left(1-x\right)^{20}}\le0\)
Bài 1. Xét dấu các biểu thức sau:
1. \(f\left(x\right)=\left(x-2\right)\left(5-3x\right)\left(x^2-x+3\right)\left(x^2+2x+1\right)\left(x^2-5x+4\right)\)
2. \(g\left(x\right)=\frac{5}{1-x}+\frac{5x}{x+1}+\frac{1}{x^2-1}\)