Chứng minh: 4 - 7 2 = 23 - 8 7
Chứng minh rằng : 23-8√7=(4-√7) 2 2 là mũ hai
\(\left(4-\sqrt{7}\right)^2=4^2-2\cdot4\cdot\sqrt{7}+7=23-8\sqrt{7}\)
Chứng minh: 23 + 8 7 - 7 = 4
Vế trái bằng vế phải nên đẳng thức được chứng minh.
Chứng minh (4–√7)²=23–8√7
Xét VT :\(\left(4-\sqrt{7}\right)^2=14-8\sqrt{7}+7=23-8\sqrt{7}\)
=> VT=VP ( đpcm)
a , cho A = \(\dfrac{1}{1^2}+\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{99^2}\) . Chứng minh A < \(\dfrac{7}{4}\)
b ,cho B = 21 + 22 + 23 + ... + 260 . Chứng minh B \(⋮\) 21
b.ta chia B thành 10 nhóm mỗi nhóm có 6 hạng tử \(B=\left(2+2^2+2^3+2^4+2^5+2^6\right)+....+\left(2^{55}+2^{56}+2^{57}+2^{58}+2^{59}+2^{60}\right)\)
\(B\text{=}2\left(1+2+2^2+2^3+2^4+2^5\right)+...+2^{55}\left(1+2+2^2+2^3+2^4+2^5\right)\)
\(B\text{=}2.63+...+2^{56}.63\)
\(\Rightarrow B⋮63\)
\(\Rightarrow B⋮21\)
2+2^2+2^3+2^4+.......+2^23+2^24
chứng minh dãy số trên chia hết cho 7
Đặt dãy 2 + 2^2 + 2^3 + 2^4 + ... + 2^23 + 2^24 là A
Theo bài ra ta có : A = ( 2 + 2^2 + 2^3 ) + .... + ( 2^22 + 2^23 + 2^24 )
A = 2(1 + 2 + 2^2 ) + ....... + 2^22(1 + 2 + 2^2 )
A = 2 . 7 + ......... + 2^22 . 7
A = 7( 2 + ............. + 2^22 ) chia hết cho 7
=> A chia hết cho 7
=> 2 + 2^2 + 2^3 + 2^4 + ..... + 2^23 + 2^24 chia hết cho 7
( điều phải chứng minh )
2+2+2^2+2^3+2^4+...+2^23+2^24
= (2+2^2+2^3)+(2^4+2^5+2^6)+...+(2^22+2^23+2^24)
= 2(1+2+2^2)+ 2^4(1+2+2^2)+....+2^22(1+2+2^2)
= (2+2^4+...+2^22)(1+2+2^2)
= (2+2^4+..+2^22)x7 chia hết cho 7
chứng minh
\(9+4\sqrt{5}=\left(\sqrt{5}+2\right)^2\)
\(\sqrt{23+8\sqrt{7}}-\sqrt{7}=4\)
Chứng minh đẳng thức:
\(\sqrt{9-4\sqrt{5}}-\sqrt{5}=-2\)
\(\sqrt{23+8\sqrt{7}}-\sqrt{7=4}\)
Chứng minh :
a) \(9+4\sqrt{5}=\left(\sqrt{5}+2\right)^2\)
b) \(\sqrt{9-4\sqrt{5}}-\sqrt{5}=-2\)
c) \(\left(4-\sqrt{7}\right)^2=23-8\sqrt{7}\)
d) \(\sqrt{23+8\sqrt{7}}-\sqrt{7}=4\)
a) \(9+4\sqrt{5}=4+4\sqrt{5}+5=2^2+2\cdot2\sqrt{5}+\left(\sqrt{5}\right)^2=\left(\sqrt{5}+2\right)^2\left(ĐPCM\right)\)
a) \(9+4\sqrt{5}=\left(\sqrt{5}\right)^2+2.\sqrt{5}.2+2^2=\left(\sqrt{5}+2\right)^2\left(đpcm\right)\)
b)\(\sqrt{9-4\sqrt{5}}-\sqrt{5}=\sqrt{\left(\sqrt{5}-2\right)^2}-\sqrt{5}=\sqrt{5}-2-\sqrt{5}=-2\left(đpcm\right)\)
c)\(\left(4-\sqrt{7}\right)^2=16-8\sqrt{7}+7=23-8\sqrt{7}\left(đpcm\right)\)
d)\(\sqrt{23+8\sqrt{7}}-\sqrt{7}=\sqrt{\left(4+\sqrt{7}\right)^2}-\sqrt{7}=4+\sqrt{7}-\sqrt{7}=4\left(đpcm\right)\)
a) Chứng minh: A = 21 +22 +23 +24 +...+ 22020 chia hết cho 3; và 7.
b) Chứng minh: B =31 +32 +33 +34 +...+22022 chia hết cho 4 và 13.
Câu 1:
$A=(2+2^2)+(2^3+2^4)+(2^5+2^6)+....+(2^{2019}+2^{2020})$
$=2(1+2)+2^3(1+2)+2^5(1+2)+....+2^{2019}(1+2)$
$=(1+2)(2+2^3+2^5+...+2^{2019})=3(2+2^3+2^5+...+2^{2019})\vdots 3$
-----------------
$A=2+(2^2+2^3+2^4)+(2^5+2^6+2^7)+....+(2^{2018}+2^{2019}+2^{2020})$
$=2+2^2(1+2+2^2)+2^5(1+2+2^2)+....+2^{2018}(1+2+2^2)$
$=2+(1+2+2^2)(2^2+2^5+....+2^{2018})$
$=2+7(2^2+2^5+...+2^{2018})$
$\Rightarrow A$ chia $7$ dư $2$.
Câu 2:
$B=(3+3^2)+(3^3+3^4)+....+(3^{2021}+3^{2022})$
$=3(1+3)+3^3(1+3)+...+3^{2021}(1+3)$
$=(1+3)(3+3^3+...+3^{2021})=4(3+3^3+....+3^{2021})\vdots 4$
-------------------
$B=(3+3^2+3^3)+(3^4+3^5+3^6)+...+(3^{2020}+3^{2021}+3^{2022})$
$=3(1+3+3^2)+3^4(1+3+3^2)+....+3^{2020}(1+3+3^2)$
$=(1+3+3^2)(3+3^4+...+3^{2020})=13(3+3^4+...+3^{2020})\vdots 13$ (đpcm)
Chứng minh rằng: (30^4)^1975 * 15^1870 * 4^935 - (7^5)^1954 chia hết cho 23