\(\left(4-\sqrt{7}\right)^2=4^2-2\cdot4\cdot\sqrt{7}+7=23-8\sqrt{7}\)
\(\left(4-\sqrt{7}\right)^2=4^2-2\cdot4\cdot\sqrt{7}+7=23-8\sqrt{7}\)
Chứng minh :
a) \(9+4\sqrt{5}=\left(\sqrt{5}+2\right)^2\)
b) \(\sqrt{9-4\sqrt{5}}-\sqrt{5}=-2\)
c) \(\left(4-\sqrt{7}\right)^2=23-8\sqrt{7}\)
d) \(\sqrt{23+8\sqrt{7}}-\sqrt{7}=4\)
Chứng minh:
a. 9+4\(\sqrt{5}\)= (\(\sqrt{5}\)+2)2
b. \(\sqrt{23+8\sqrt{ }7}\) - \(\sqrt{7}\) = 4
Chứng minh rằng:
a, \(\left(2-\sqrt{3}\right)\sqrt{7+4\sqrt{3}}=1\)
b, \(\sqrt{9-\sqrt{17}}.\sqrt{9+\sqrt{17}}=8\)
CMR:
a) \(9+4\sqrt{5}=\left(\sqrt{5}+2\right)^2\)
b) \(\sqrt{9-4\sqrt{5}}-\sqrt{5}=-2\)
c) \(23-8\sqrt{7}=\left(4-\sqrt{7}\right)^2\)
d) \(\sqrt{17-12\sqrt{2}}+2\sqrt{2}=3\)
Tìm x
d, \(\sqrt{x-2\sqrt{x-1}=\sqrt{x-1}-1}\)
e, \(\sqrt{1-12x+36x^2}=5\)
g, \(\sqrt{23+8\sqrt{7}}-\sqrt{7}=4\)
1)chứng minh
a)\(11+6\sqrt{2}=\left(3+\sqrt{2}\right)^2\)
b)\(\sqrt{11+6\sqrt{2}}+\sqrt{11-6\sqrt{2}}=6\)
2)chứng minh
a)\(8-2\sqrt{7}=\left(\sqrt{7}-1\right)^2\)
b)\(\sqrt{8-2\sqrt{7}}-\sqrt{8+2\sqrt{7}}=2\)
Chứng minh
a) 8-2\(\sqrt{7}\) = \(^{\left(\sqrt{7}-1\right)}\)^2
b) \(\sqrt{4+2\sqrt{3}}\) - \(\sqrt{4-2\sqrt{3}}\) = 2
chứng mình rằng 2x - căn bậc hai( 2x+7 )^2n = -7 nếu x lớn hơn hoặc nhỏ hơn -7/2 và = 4x+7 nếu x < -7/2
Chứng minh:
a)\(11+6\sqrt{2}=\left(3+\sqrt{2}\right)^2\)
b)\(8-2\sqrt{7}=\left(\sqrt{7}-1\right)^2\)