Những câu hỏi liên quan
H24
Xem chi tiết
CN
Xem chi tiết
NL
3 tháng 5 2021 lúc 21:26

a.

\(y'=\dfrac{\left(sinx+cosx\right)'}{2\sqrt{sinx+cosx}}=\dfrac{cosx-sinx}{2\sqrt{sinx+cosx}}\)

b.

\(y'=\dfrac{-4}{\left(x-1\right)^2}\)

Tiếp tuyến vuông góc với \(y=\dfrac{1}{4}x+5\) nên có hệ số góc thỏa mãn \(k.\left(\dfrac{1}{4}\right)=-1\Rightarrow k=-4\)

\(\Rightarrow\dfrac{-4}{\left(x-1\right)^2}=-4\Rightarrow\left(x-1\right)^2=1\)

\(\Rightarrow\left[{}\begin{matrix}x=0\Rightarrow y=-3\\x=2\Rightarrow y=5\end{matrix}\right.\)

Có 2 tiếp tuyến thỏa mãn: \(\left[{}\begin{matrix}y=-4x-3\\y=-4\left(x-2\right)+5\end{matrix}\right.\)

Bình luận (0)
QA
Xem chi tiết
KB
23 tháng 4 2022 lúc 20:38

Ta có : \(y=\dfrac{x}{x-1}=1+\dfrac{1}{x-1}\Rightarrow y'=\dfrac{-1}{\left(x-1\right)^2}\)

Giả sử M(xo ; yo) là tiếp điểm của tiếp tuyến d với đths trên \(\). Ta có : 

 PT d : \(y=\dfrac{-1}{\left(x_0-1\right)^2}\left(x-x_0\right)+\dfrac{x_0}{x_{0-1}}=\dfrac{-x}{\left(x_0-1\right)^2}+\dfrac{x_0^2}{\left(x_0-1\right)^2}\) 

K/C từ B(1;1) đến d : d(B;d) = \(\left|\dfrac{\dfrac{1}{\left(x_0-1\right)^2}+1-\dfrac{x_0^2}{\left(x_0-1\right)^2}}{\sqrt{\dfrac{1}{\left(x_0-1\right)^4}+1}}\right|\)  

\(\left|\dfrac{2\left(1-x_0\right)}{\left(x_0-1\right)^2}\right|:\dfrac{\sqrt{\left(x_0-1\right)^4+1}}{\left(x_0-1\right)^2}=\dfrac{2\left|1-x_0\right|}{\sqrt{\left(1-x_0\right)^4+1}}\)   \(\le\dfrac{2\left|1-x_0\right|}{\sqrt{2\left(1-x_0\right)^2}}=\sqrt{2}\)

" = " \(\Leftrightarrow\left[{}\begin{matrix}x_0=0\\x_0=2\end{matrix}\right.\)

Suy ra : y = -x hoặc y = -x + 4 

Bình luận (0)
NL
23 tháng 4 2022 lúc 20:42

\(y'=\dfrac{-1}{\left(x-1\right)^2}\)

Giả sử \(x_0\) là hoành độ tiếp điểm

Phương trình tiếp tuyến d:

\(y=-\dfrac{1}{\left(x_0-1\right)^2}\left(x-x_0\right)+\dfrac{x_0}{x_0-1}\)

\(\Rightarrow x+\left(x_0-1\right)^2y-x_0^2=0\)

\(d\left(B;d\right)=\dfrac{\left|1+\left(x_0-1\right)^2-x_0^2\right|}{\sqrt{1+\left(x_0-1\right)^4}}=\dfrac{2\left|x_0-1\right|}{\sqrt{1+\left(x_0-1\right)^4}}=\dfrac{2}{\sqrt{\dfrac{1}{\left(x_0-1\right)^2}+\left(x_0-1\right)^2}}\le\dfrac{2}{\sqrt{2}}\)

Dấu "=" xảy ra khi:

\(\dfrac{1}{\left(x_0-1\right)^2}=\left(x_0-1\right)^2\Rightarrow\left[{}\begin{matrix}x_0=0\\x_0=2\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}y=-x\\y=-x+4\end{matrix}\right.\)

Bình luận (0)
P2
Xem chi tiết
TD
Xem chi tiết
HT
31 tháng 3 2022 lúc 20:52

Y=9x+7

Bình luận (0)
 Khách vãng lai đã xóa
TN
20 tháng 4 2022 lúc 15:26

https://drive.google.com/file/d/14Q-YI3szy-rePnIHWGD35RKCWiCXCT6k/view?usp=sharing

Bình luận (0)
NP
20 tháng 4 2022 lúc 16:05

loading...  

Bình luận (0)
PB
Xem chi tiết
CT
12 tháng 6 2018 lúc 6:43

Chọn B.

Bình luận (0)
AD
Xem chi tiết
NT
2 tháng 1 2022 lúc 8:21

Các hàm số a,b,e là các hàm số bậc nhất

Bình luận (1)
TN
Xem chi tiết
NL
28 tháng 4 2021 lúc 11:49

Thay tọa độ A vào ta được: \(\dfrac{b}{-1}=-1\Rightarrow b=1\)

\(\Rightarrow y=\dfrac{ax+1}{x-1}\Rightarrow y'=\dfrac{-a-1}{\left(x-1\right)^2}\)

\(y'\left(0\right)=-3\Leftrightarrow\dfrac{-a-1}{\left(0-1\right)^2}=-3\Leftrightarrow-a-1=-3\)

\(\Rightarrow a=2\)

Bình luận (0)
NL
Xem chi tiết
NM
15 tháng 12 2021 lúc 17:07

\(1,\Rightarrow\dfrac{x}{3}=\dfrac{y}{5}=\dfrac{3x+y}{9+5}=\dfrac{28}{14}=2\\ \Rightarrow\left\{{}\begin{matrix}x=6\\y=10\end{matrix}\right.\\ 2,\\ a,a=2\Rightarrow y=f\left(x\right)=2x\\ b,f\left(-0,5\right)=2\left(-0,5\right)=-1\\ f\left(\dfrac{3}{4}\right)=2\cdot\dfrac{3}{4}=\dfrac{3}{2}\\ c,\text{Thay }x=-4;y=2\Rightarrow-4a=2\Rightarrow a=-\dfrac{1}{2}\)

Bình luận (0)
TY
15 tháng 12 2021 lúc 17:12

Ta có: x/y=3/5 ⇒ x/3=y/5 

Theo tính chất của dãy tỉ số bằng nhau ta có:x/3=y/5=3x/3.3=y/53x+y9/y9+5=28/14=2

Do đó: 

x/3=2 ⇒x=2.3=6

y/5=2 ⇒y=2.5=10

Vậy x=6 và y=10.

Bình luận (0)
LC
Xem chi tiết