Những câu hỏi liên quan
H24
Xem chi tiết
LG
30 tháng 11 2017 lúc 19:50

n^4 - 3x^3 + n^2 - 3n + 1 n^2 + 1 n^2 - 3n n^4 + n^2 - 3n^3 - 3n + 1 - 3n^3 -3n 1

Để chia \(n^4-3n^3+n^2-3n+1\) cho \(n^2+1\) có giá trị nguyên

\(n^4-3n^3+n^2-3n+1\) \(⋮n^2+1\)

\(1⋮n^2+1\)

\(\Leftrightarrow n^2+1\inƯ\left(1\right)=\left\{1;-1\right\}\)

n2 + 1 1 -1

n

0 ( loại )

Bình luận (2)
CC
Xem chi tiết
TN
Xem chi tiết
H24
Xem chi tiết
NL
3 tháng 8 2021 lúc 10:09

\(1152=32.36\)

Đặt \(A=n^8-n^6-n^4+n^2=n^6\left(n^2-1\right)-n^2\left(n^2-1\right)\)

\(=n^2\left(n^2-1\right)\left(n^4-1\right)=n^2\left(n^2-1\right)\left(n^2-1\right)\left(n^2+1\right)\)

\(=\left[n\left(n-1\right)\left(n+1\right)\right]^2\left(n^2+1\right)\)

Do \(n\) lẻ \(\Rightarrow n=2k+1\)

\(\Rightarrow A=\left[\left(2k+1\right)\left(2k+1-1\right)\left(2k+1+1\right)\right]^2\left[\left(2k+1\right)^2+1\right]\)

\(=32\left[k\left(k+1\right)\left(2k+1\right)\right]^2.\left(2k^2+2k+1\right)\)

Do \(k\) và k+1 là 2 số tự nhiên liên tiếp \(\Rightarrow k\left(k+1\right)⋮2\) (1)

Nếu k chia hết cho 3 \(\Rightarrow k\left(k+1\right)\left(2k+1\right)⋮3\)

Nếu k chia 3 dư 1 \(\Rightarrow2k+1⋮3\Rightarrow k\left(k+1\right)\left(2k+1\right)⋮3\)

Nếu k chia 3 dư 2 \(\Rightarrow k+1⋮3\Rightarrow k\left(k+1\right)\left(2k+1\right)⋮3\)

\(\Rightarrow k\left(k+1\right)\left(2k+1\right)\) luôn chia hết cho 3 (2)

(1);(2) \(\Rightarrow k\left(k+1\right)\left(2k+1\right)⋮6\Rightarrow\left[k\left(k+1\right)\left(2k+1\right)\right]^2⋮36\)

\(\Rightarrow32\left[k\left(k+1\right)\left(2k+1\right)\right]^2⋮\left(32.36\right)\Rightarrow A⋮1152\)

Bình luận (0)
MN
18 tháng 11 2021 lúc 20:42

ảnh đại diện trên google kìa

Bình luận (0)
 Khách vãng lai đã xóa
NN
Xem chi tiết
H9
1 tháng 8 2023 lúc 7:05

Đặt: \(A=n^8-n^6-n^4+n^2\)

\(A=\left(n^8-n^6\right)-\left(n^4-n^2\right)\)

\(A=n^6\left(n^2-1\right)-n^2\left(n^2-1\right)\)

\(A=\left(n^2-1\right)\left(n^6-n^2\right)\)

\(A=\left(n-1\right)\left(n+1\right)n^2\left(n^4-1\right)\)

\(A=n^2\left(n-1\right)\left(n+1\right)\left[\left(n^2\right)^2-1\right]\)

\(A=n^2\left(n-1\right)\left(n+1\right)\left(n^2-1\right)\left(n^2+1\right)\)

\(A=n^2\left(n-1\right)\left(n+1\right)\left(n-1\right)\left(n+1\right)\left(n^2+1\right)\)

\(A=n\left(n-1\right)\left(n+1\right)n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)\)

Ta có: \(n\left(n-1\right)\left(n+1\right)\) là tích của 3 số tự nhiên liên tiếp nên sẽ chia hết cho 3 

Còn: \(\left[n\left(n-1\right)\left(n+1\right)\right]\left[n\left(n-1\right)\left(n+1\right)\right]\) sẽ chia hết cho \(3\times3=9\) 

Do n sẽ là số lẻ nên \(\left(n-1\right);\left(n+1\right)\) sẽ luôn luôn là số chẵn 

Mà: \(\left(n-1\right)\left(n+1\right)\) sẽ chia hết cho 8 vì tích của hai số chẵn liên liếp sẽ chia hết cho 8 

Còn  \(\left(n+1\right)\left(n-1\right)\left(n+1\right)\left(n-1\right)\left(n^2+1\right)\) sẽ chia hết cho \(8\cdot8\cdot2=128\) 

Ta có: 

\(\text{Ư}\text{C}LN\left(9;128\right)=1\)

Nên: A ⋮ \(9\cdot128=1152\left(dpcm\right)\)

Bình luận (0)
TH
Xem chi tiết
VN
Xem chi tiết
LH
Xem chi tiết
HD
Xem chi tiết
PL
26 tháng 4 2016 lúc 20:37

Ta có : n.n-n+1

= n2+n-2n+1

=n(n+1) -2n+1

Vì n+1 chia hết cho n+1 => n(n+1) chia hết cho n+1

Để n.n-n+1 chia hết cho n+1

=> 1-2n  phải chia hết cho n+1

=>1-2n / n+1 phải thuộc Z

ta lại có : \(\frac{1-2n}{n+1}=\frac{-2n-2+3}{n+1}=\frac{-2\left(n+1\right)+3}{n+1}=-2+\frac{3}{n+1}\)

để \(-2+\frac{3}{n+1}\) \(\in Z\)

=> \(\frac{3}{n+1}\in Z\)hay \(n+1\in\text{Ư}_{\left(3\right)}\)

bạn tự tính nốt nhé !

Bình luận (0)