Cho A = \(a,45+3,b5\)
B = \(a,bc+5,7-1,5c\)
Hãy so sánh hai biểu thức A và B.
A = a + 0,45 + 3 + 0,b + 0,05 = (a + 0,b) + (0,45 + 3 + 0,05) = a,b + 3,5
B = a,b + 0,0c + 5,7 - (1,5 + 0,0c) = a,b + 0,0c + 5,7 - 1,5 - 0,0c = a,b + (0,0c - 0,0c) + (5,7 - 1,5) = a,b + 4,2
=> A < B
a sờ lô anh em ơi
A= a,45 + 3,b5 và
B= a,bc + 5,7 - 1,5c
Tìm số có 2 chữ số . Biết rằng khi chia số đó cho chữ số hàng đơn vị và số dư là số hàng chục ? lẹ nha mình đang cần gấp
hãy so sánh
a 72^45 - 72^44 và 72^44 - 72^43
b5^23 và 6.5^22
P/s : mk làm phần b trước
\(6\cdot5^{22}=\left(5+1\right)\cdot5^{22}=5^{23}+5^{22}>5^{23}\)
Hok tốt
a) đây :
\(72^{45}-72^{44}=72^{44}\cdot72-72^{44}=72^{44}\cdot\left(72-1\right)\)
\(72^{44}-72^{43}=72^{43}\cdot72-72^{43}=72^{43}\cdot\left(72-1\right)\)
mà \(72^{44}>72^{43}\)=> \(72^{44}\cdot\left(72-1\right)>72^{43}\cdot\left(72-1\right)\)
=> \(72^{45}-72^{44}>72^{44}-72^{43}\)
Cho 3 số thực a, b, c thỏa mãn a+b+c=0 . CMR a5+b5+c5=\(\dfrac{5}{2}\)abc(a2+b2+c2)
Có : a + b + c = 0
=> (a + b)5 = (-c)5
a5 + 5a4b + 10a3b2 + 10a2b3 + 5ab4 + b5 = -c5
a5 + b5 + c5 = -5a4b - 10a3b2 - 10a2b3 - 5ab4
a5 + b5 + c5 = -5ab(a3 + 2a2b + 2ab2 + b3)
a5 + b5 + c5 = -5ab[(a3 + b3) + (2a2b + 2ab2)]
a5 + b5 + c5 = -5ab[(a + b)(a2 - ab + b2) + 2ab(a + b)]
a5 + b5 + c5 = -5ab(a + b)(a2 + b2 + ab)
a5 + b5 + c5 = 5abc(a2 + b2 + ab) (do a+b+c=0=> a+b=-c)
2(a5 + b5 + c5) = 5abc(2a2 + 2b2 + 2ab)
2(a5 + b5 + c5) = 5abc[a2 + b2 +(a2 + 2ab + b2)]
2(a5 + b5 + c5) = 5abc[a2 + b2 + (a + b)2]
2(a5 + b5 + c5) = 5abc(a2 + b2 + c2) (do a+b=-c=> (a +b )2 = c2
\(\Leftrightarrow\) \(a^5+b^5+c^5=\dfrac{5}{2}abc\left(a^2+b^2+c^2\right)\)
Vậy...
Cho a + b + c = 0. Chứng minh : (a2 + b2 + c2 )/2 * (a3 + b3 + c3 )/3 = (a5 + b5 + c5 )/5
Cho a+b = -3, ab = -2. Hãy tính giá trị của:
a2 + b2, a4 + b4, a3 + b3, a5 + b5, a7 + b7.
\(a^2+b^2=\left(a+b\right)^2-2ab=\left(-3\right)^2-2\cdot\left(-2\right)=9+4=13\)
\(a^3+b^3=\left(a+b\right)^3-3ab\left(a+b\right)\)
\(=\left(-3\right)^3-3\cdot\left(-2\right)\cdot\left(-3\right)\)
\(=-27-18=-45\)
a, Cho 3 số thực a, b, c thỏa mãn a+b+c=0. CMR a5+b5+c5=5/2abc(a2+b2+c2)
b, Tìm số thực x thỏa mãn (3x-2)5+(5-x)5+(-2x-3)5=0
b: (3x-2)^5+(5-x)^5+(-2x-3)^5=0
Đặt a=3x-2; b=-2x-3
Pt sẽ trở thành:
a^5+b^5-(a+b)^5=0
=>a^5+b^5-(a^5+5a^4b+10a^3b^2+10a^2b^3+5ab^4+b^5)=0
=>-5a^4b-10a^3b^2-10a^2b^3-5ab^4=0
=>-5a^4b-5ab^4-10a^3b^2-10a^2b^3=0
=>-5ab(a^3+b^3)-10a^2b^2(a+b)=0
=>-5ab(a+b)(a^2-ab+b^2)-10a^2b^2(a+b)=0
=>-5ab(a+b)(a^2-ab+b^2+2ab)=0
=>-5ab(a+b)(a^2+b^2+ab)=0
=>ab(a+b)=0
=>(3x-2)(-2x-3)(5-x)=0
=>\(x\in\left\{\dfrac{2}{3};-\dfrac{3}{2};5\right\}\)
b5:tìm x,y,z
cho a,b,c là 3 số thực dương thỏa mãn a+b/c=b+c/a=c+a/b.Hãy tính A=(1+b/a)(1+a/c)(1+c/b)
Cho a,b là hai số thực.
CMR: (a2+b2)(a4+b4)≤(a+b)(a5+b5)
Đề bài sai
Phản ví dụ:
\(a=-1;b=1\) thì \(\left(a^2+b^2\right)\left(a^4+b^4\right)=4\)
Trong khi \(\left(a+b\right)\left(a^5+b^5\right)=0\)
\(4< 0\) là sai
BĐT này chỉ đúng với a;b là các số thực không âm (hoặc dương), hoặc cùng dấu