cho
\(\frac{1+2y}{18}\)=\(\frac{4y-5}{9}\)=\(\frac{2x+4y-4}{7x}\)
tính x
tìm x,y biết: \(\frac{2x+1}{5}=\frac{4y-5}{9}=\frac{2x+4y-4}{7x}\)
\(\frac{2x+1}{5}=\frac{4y-5}{9}=\frac{2x+4y-5}{7x}\)
Ap dung tinh chat ti so bang nhau , ta co :
\(\Rightarrow2x+1=0\Rightarrow2x=1\Rightarrow x=\frac{1}{2}\)
\(4y-5=0\Rightarrow4y=5\Rightarrow y=\frac{5}{4}\)
bn Lan Hương ơi x=\(\frac{-1}{2}\)chứ
Giải
Áp dụng tính chất của dãy các tỉ số bằng nhau , ta có :
\(\frac{2x+1+4y-5}{5+9}=\frac{2x+4y-4}{7x}\)
\(\Rightarrow\frac{2x+4y-4}{14}=\frac{2x+4y-4}{7x}\)
\(\Rightarrow14=7x\)\(\Leftrightarrow x=\frac{14}{7}=2\)
Thay x = 2 vào biểu thức đại số \(\frac{2x+1}{5}\), ta được :
\(\frac{2\times2+1}{5}=\frac{4+1}{5}=\frac{5}{5}=1\)
\(\Rightarrow\frac{2y-5}{9}=1\)
\(\Rightarrow2y-5=9\)
\(\Rightarrow2y=9+5\)
\(\Rightarrow2y=14\)
\(\Rightarrow y=\frac{14}{2}\)
\(\Rightarrow y=7\)
Vậy \(x,y\in\left\{\left(2,7\right)\right\}\)
\(\frac{2x+1}{5}=\frac{4y-5}{9}=\frac{2x+4y-4}{7x}\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{2x+1}{5}=\frac{4y-5}{9}=\frac{2x+1+4y-5}{5+9}\)
\(\Rightarrow\frac{2x+4y-4}{14}=\frac{2x+4y-4}{7x}\)
\(\Rightarrow x=2;y=\frac{7}{2}\)
tìm x,y biết 2x+\(\frac{1}{5}\)=4y-\(\frac{5}{9}\)=\(\frac{2x+4y-4}{-7x}\)
\(\frac{2x+1}{5}=\frac{4y-5}{9}=\frac{2x+4y-4}{7x}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{2x+1}{5}=\frac{4y-5}{9}=\frac{2x+1+4y-5}{5+9}=\frac{2x+4y-4}{14}\Rightarrow\frac{2x+4y-4}{14}=\frac{2x+4y-4}{7x}\)
\(\Rightarrow tử=tử,mẫu=mẫu\)
\(\Rightarrow14=7x\Rightarrow x=\frac{14}{7}=2\)
Ta có :\(\frac{2x+1}{5}=\frac{4+1}{5}=\frac{5}{5}=1\)
Suy ra:\(\frac{4y-5}{9}=1\Rightarrow4y-5=9\Rightarrow4y=9+5\Rightarrow4y=14\Rightarrow y=\frac{14}{4}=\frac{7}{2}\)
Vậy x=2 và y=\(\frac{7}{2}\)
tìm x,y biết : 2x + \(\frac{1}{5}\)= 4y-\(\frac{5}{9}\)= \(\frac{2x+4y-4}{7x}\)
tìm x,y
a\(\frac{2x+1}{5}=\frac{4y-5}{9}=\frac{2x+4y-4}{7x}\)
b, \(\frac{x+4}{6}=\frac{3y-1}{8}=\frac{3y-x-5}{x}\)
c, \(\frac{x+1}{3}=\frac{y-2}{5}=\frac{2z+14}{9}\)và x + z = y
a) Theo bài ra, ta có:
\(\frac{2x+1}{5}=\frac{4y-5}{9}=\frac{2x+4y-4}{7x}\)
\(\Rightarrow\left(2x+1\right).9=\left(4y-5\right).5\)
\(\Rightarrow18x+9=20y-25\) (1)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{2x+1}{5}=\frac{4y-5}{9}=\frac{2x+4y-4}{7x}=\frac{2x+1+4y-5}{5+9}=\frac{2x+4y-4}{14}\)
\(\Rightarrow\frac{2x+4y-4}{7x}=\frac{2x+4y-4}{14}\)
\(\Rightarrow7x=14\)
\(\Rightarrow x=14:7\)
\(\Rightarrow x=2\) (2)
Thay (2) vào (1) ta có:
\(18x+9=20y-25\)
\(hay:18.2+9=20y-25\)
\(\Rightarrow20y-25=36+9\)
\(\Rightarrow20y-25=45\)
\(\Rightarrow20y=45+25\)
\(\Rightarrow20y=70\)
\(\Rightarrow y=\frac{7}{2}\)
Vậy \(x=2;y=\frac{7}{2}\)
b) Theo bài ra, ta có:
\(\frac{x+4}{6}=\frac{3y-1}{8}=\frac{3y-x-5}{x}\)
\(\Rightarrow\left(x+4\right).8=\left(3y-1\right).6\)
\(\Rightarrow8x+32=18y-6\) (1)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{x+4}{6}=\frac{3y-1}{8}=\frac{3y-x-5}{x}=\frac{3y-1-x+4}{8-6}=\frac{3y-x-5}{2}\)
\(\Rightarrow\frac{3y-x-5}{x}=\frac{3y-x-5}{2}\)
\(\Rightarrow x=2\) (2)
Thay (2) vào (1) ta có:
\(8x+32=18y-6\)
\(hay:8.2+32=18y-6\)
\(\Rightarrow18y-6=16+32\)
\(\Rightarrow18y-6=48\)
\(\Rightarrow18y=48+6\)
\(\Rightarrow18y=54\)
\(\Rightarrow y=3\)
Vậy \(x=2;y=3\)
Giải:
Áp dụng t/c dãy tỉ số bằng nhau ta có:
\(\frac{2x+1}{5}=\frac{4y-5}{9}=\frac{2x+4y-4}{7x}\) \(=\frac{2x+1+4y-5}{5+9}=\frac{2x+4y-4}{14}\)
Do \(\frac{2x+4y-4}{7x}=\frac{2x+4y-4}{14}\)
\(\Rightarrow\left(2x+4y-4\right)14=\left(2x+4y-4\right)7x\)
\(\Rightarrow7x=14\)
\(\Rightarrow x=2\)
Khi đó \(\frac{2.2+1}{5}=\frac{4y-5}{9}\)
\(\Rightarrow\frac{4y-5}{9}=1\)
\(\Rightarrow4y-5=9\)
\(\Rightarrow4y=14\Rightarrow y=3,5\)
Vậy \(\left[\begin{matrix}x=2\\y=3,5\end{matrix}\right.\).
tìm x, y biết \(\frac{\left(2x+1\right)}{5}\)=\(\frac{\left(4y-5\right)}{9}\)=\(\frac{2x+4y-4}{7x}\)
giúp mình với :
tìm x,y,z biết :
\(\frac{2x+1}{5}=\frac{x+1}{5}=\frac{4y-5}{x}=\frac{2x+4y-4}{7x}\)
Tìm x,y biết :
\(\frac{2x+1}{5}=\frac{4y-5}{9}=\frac{2x+4y-1}{7x}\)
CÁC BẠN GIÚP MÌNH ZỚI !!!!!!!!!!!!!!!!!!
Tính:
\(\frac{4x-1}{2x^2y}-\frac{7x-1}{3x^2y}\)
\(\frac{3}{2x+6}-\frac{x-6}{2x^2+6x}\)
\(\frac{2x}{x^2+2xy}+\frac{y}{xy-2y^2}+\frac{4}{x^2-4y^2}\)
\(\)Thank you so much!
a.\(\frac{4x-1}{2x^2y}-\frac{7x-1}{3x^2y}\) MTC=6x2y
\(=\frac{3\left(4x-1\right)}{6x^2y}-\frac{2\left(7x-1\right)}{6x^2y}\)
\(=\frac{12x-3-\left(14x-2\right)}{6x^2y}\)
\(=\frac{12x-3-14x+2}{6x^2y}\)
\(=\frac{-2x-1}{6x^2y}=\frac{2\left(-x-1\right)}{6x^2y}=-\frac{x-1}{3x^2y}\)
b.\(\frac{3}{2x+6}-\frac{x-6}{2x^2+6x}\) MTC= 2x (x + 3)
\(=\frac{3}{2\left(x+3\right)}-\frac{x-6}{2x\left(x+3\right)}\)
\(=\frac{3x}{2x\left(x+3\right)}-\frac{x-6}{2x\left(x+3\right)}=\frac{3x-\left(x-6\right)}{2x\left(x+3\right)}\)
\(=\frac{3x-x+6}{2x\left(x+3\right)}=\frac{2x+6}{2x\left(x+3\right)}=\frac{2\left(x+3\right)}{2x\left(x+3\right)}=\frac{1}{x}\)
c.\(\frac{2x}{x^2+2xy}+\frac{y}{xy-2y^2}+\frac{4}{x^2-4y^2}\)
\(=\frac{2x}{x\left(x+2y\right)}+\frac{y}{y\left(x-2y\right)}+\frac{4}{\left(x-2y\right)\left(x+2y\right)}\)MTC= xy (x+2y).(x-2y)
\(=\frac{2xy\left(x-2y\right)}{xy\left(x+2y\right)\left(x-2y\right)}+\frac{xy\left(x+2y\right)}{xy\left(x+2y\right)\left(x-2y\right)}+\frac{4xy}{xy\left(x+2y\right)\left(x-2y\right)}\)
\(=\frac{2x^2y-4xy^2+x^2y+2xy^2+4xy}{xy\left(x+2y\right)\left(x-2y\right)}\)
\(=\frac{3x^2y-2xy^2+4xy}{xy\left(x-2y\right)\left(x+2y\right)}=\frac{xy\left(3x-2y+4\right)}{xy\left(x-2y\right)\left(x+2y\right)}=\frac{3x-2y+4}{\left(x-2y\right)\left(x+2y\right)}\)
Chọn mk nha!