Ôn tập toán 7

ND

tìm x,y

a\(\frac{2x+1}{5}=\frac{4y-5}{9}=\frac{2x+4y-4}{7x}\)

b, \(\frac{x+4}{6}=\frac{3y-1}{8}=\frac{3y-x-5}{x}\)

c, \(\frac{x+1}{3}=\frac{y-2}{5}=\frac{2z+14}{9}\)và x + z = y

MP
26 tháng 2 2017 lúc 20:12

a) Theo bài ra, ta có:

\(\frac{2x+1}{5}=\frac{4y-5}{9}=\frac{2x+4y-4}{7x}\)

\(\Rightarrow\left(2x+1\right).9=\left(4y-5\right).5\)

\(\Rightarrow18x+9=20y-25\) (1)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\frac{2x+1}{5}=\frac{4y-5}{9}=\frac{2x+4y-4}{7x}=\frac{2x+1+4y-5}{5+9}=\frac{2x+4y-4}{14}\)

\(\Rightarrow\frac{2x+4y-4}{7x}=\frac{2x+4y-4}{14}\)

\(\Rightarrow7x=14\)

\(\Rightarrow x=14:7\)

\(\Rightarrow x=2\) (2)

Thay (2) vào (1) ta có:

\(18x+9=20y-25\)

\(hay:18.2+9=20y-25\)

\(\Rightarrow20y-25=36+9\)

\(\Rightarrow20y-25=45\)

\(\Rightarrow20y=45+25\)

\(\Rightarrow20y=70\)

\(\Rightarrow y=\frac{7}{2}\)

Vậy \(x=2;y=\frac{7}{2}\)

b) Theo bài ra, ta có:

\(\frac{x+4}{6}=\frac{3y-1}{8}=\frac{3y-x-5}{x}\)

\(\Rightarrow\left(x+4\right).8=\left(3y-1\right).6\)

\(\Rightarrow8x+32=18y-6\) (1)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\frac{x+4}{6}=\frac{3y-1}{8}=\frac{3y-x-5}{x}=\frac{3y-1-x+4}{8-6}=\frac{3y-x-5}{2}\)

\(\Rightarrow\frac{3y-x-5}{x}=\frac{3y-x-5}{2}\)

\(\Rightarrow x=2\) (2)

Thay (2) vào (1) ta có:

\(8x+32=18y-6\)

\(hay:8.2+32=18y-6\)

\(\Rightarrow18y-6=16+32\)

\(\Rightarrow18y-6=48\)

\(\Rightarrow18y=48+6\)

\(\Rightarrow18y=54\)

\(\Rightarrow y=3\)

Vậy \(x=2;y=3\)

Bình luận (0)
HA
26 tháng 2 2017 lúc 20:17

Giải:

Áp dụng t/c dãy tỉ số bằng nhau ta có:

\(\frac{2x+1}{5}=\frac{4y-5}{9}=\frac{2x+4y-4}{7x}\) \(=\frac{2x+1+4y-5}{5+9}=\frac{2x+4y-4}{14}\)

Do \(\frac{2x+4y-4}{7x}=\frac{2x+4y-4}{14}\)

\(\Rightarrow\left(2x+4y-4\right)14=\left(2x+4y-4\right)7x\)

\(\Rightarrow7x=14\)

\(\Rightarrow x=2\)

Khi đó \(\frac{2.2+1}{5}=\frac{4y-5}{9}\)

\(\Rightarrow\frac{4y-5}{9}=1\)

\(\Rightarrow4y-5=9\)

\(\Rightarrow4y=14\Rightarrow y=3,5\)

Vậy \(\left[\begin{matrix}x=2\\y=3,5\end{matrix}\right.\).

Bình luận (0)
CU
6 tháng 3 2017 lúc 23:01

haha! ***** cái này mà cùng hỏi!

Bình luận (0)

Các câu hỏi tương tự
NT
Xem chi tiết
NN
Xem chi tiết
NN
Xem chi tiết
H24
Xem chi tiết
LL
Xem chi tiết
TL
Xem chi tiết
GN
Xem chi tiết
BC
Xem chi tiết
BN
Xem chi tiết