Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6

PN
Xem chi tiết
PT
Xem chi tiết
NL
29 tháng 3 2022 lúc 17:37

Đường tròn (C) tâm \(I\left(1;-2\right)\) bán kính \(R=\sqrt{5}\)

Điểm M thuộc (C) thỏa mãn khoảng cách từ M tới \(\Delta\) lớn nhất khi M là giao điểm của (C) và đường thẳng d qua I và vuông góc \(\Delta\)

Phương trình d có dạng:

\(2\left(x-1\right)-1\left(y+2\right)=0\Leftrightarrow2x-y-4=0\)

Hệ pt tọa độ giao điểm (C) và d:

\(\left\{{}\begin{matrix}x^2+y^2-2x+4y=0\\y=2x-4\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x^2+\left(2x-4\right)^2-2x+4\left(2x-4\right)=0\\y=2x-4\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2-2x=0\\y=2x-4\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}M\left(0;-4\right)\\M\left(2;0\right)\end{matrix}\right.\)

Với \(M\left(0;-4\right)\Rightarrow d\left(M;\Delta\right)=\dfrac{\left|-2.4+7\right|}{\sqrt{1^2+2^2}}=\dfrac{1}{\sqrt{5}}\)

Với \(M\left(2;0\right)\Rightarrow d\left(M;\Delta\right)=\dfrac{\left|2+0+7\right|}{\sqrt{1^2+2^2}}=\dfrac{9}{\sqrt{5}}\)

Do \(\dfrac{9}{\sqrt{5}}>\dfrac{1}{\sqrt{5}}\) nên \(M\left(2;0\right)\) là điểm cần tìm

Bình luận (0)
PB
Xem chi tiết
CT
13 tháng 8 2018 lúc 3:32

b) Xét tam giác OMB vuông tại O có:

BM2 = OM2 + OB2 = 1 + 1 = 2 ⇒ BM = √2

Tương tự tam giác OAB vuông tại O có:

B A 2  = O A 2 + O B 2  = 1 + 1 = 2 ⇒ BA = 2

Xét tam giác MAB có:

B M 2 + B A 2  = 2 + 2 = 4 = A M 2

⇒ ΔMAB vuông tại B

Do đó, khoảng cách từ M đến đường thẳng (d) là độ dài đoạn BM = 2

Bình luận (0)
QL
Xem chi tiết
HM
27 tháng 9 2023 lúc 0:04

Điểm nằm trên đường thẳng , nên khi di động trên đoạn thẳng thì SM ngắn nhất khi \(SM \bot d\)

Nên khoảng cách ngắn nhất từ điểm \(M(5;10)\) đến điểm S  là khoảng cách từ điểm \(M(5;10)\) đến d

Khoảng cách đó là: \(d\left( {M,d} \right) = \frac{{\left| {12.5 - 5.10 + 16} \right|}}{{\sqrt {{{12}^2} + {5^2}} }} = 2\)

Vậy khi di động trên đường thẳng thì khoảng cách ngắn nhất từ điểm \(M(5;10)\) đến điểm là 2.

Bình luận (0)
PB
Xem chi tiết
CT
31 tháng 5 2017 lúc 16:27

Bình luận (0)
PB
Xem chi tiết
CT
12 tháng 12 2017 lúc 12:21

Đáp án B

Phương pháp:

thay tọa độ điểm B vào phương trình  ( α ) => 1 phương trình 2 ẩn a, b.

 Sử dụng công thức tính khoảng cách

 lập được 1 phương trình 2 ẩn chứa a, b.

+) Giải hệ phương trình tìm a,b => Toạ độ điểm B => Độ dài AB.

Dế thấy 

Ta có 

Lại có

Đường thẳng d đi qua M(0;0;-1), có  u → = ( 1 ; 2 ; 2 )

 

Do đó

 

 

Vậy AB =  7 2

Bình luận (0)
PB
Xem chi tiết
CT
27 tháng 6 2017 lúc 13:33

Đáp án: D

Khoảng cách từ điểm M(3;-4) đến đường thẳng d: 3x - 4y - 1 = 0 là:

Đề thi Học kì 2 Toán 10 có đáp án (Đề 2)

Bình luận (0)
PB
Xem chi tiết
CT
25 tháng 6 2019 lúc 14:25

Bình luận (0)
TT
Xem chi tiết
TT
16 tháng 3 2022 lúc 22:08

undefinedundefined

Bình luận (0)
QL
Xem chi tiết
HM
30 tháng 9 2023 lúc 23:54

a) Khoảng cách từ điểm A đến đường thẳng \(\Delta \) là: \(d\left( {A,\Delta } \right) = \frac{{\left| {0 - 2 - 4} \right|}}{{\sqrt {{1^2} + {1^2}} }} = 3\sqrt 2 \).

b) Ta có: \(\overrightarrow {{n_a}}  = \overrightarrow {{n_\Delta }}  = \left( {1;1} \right)\). Phương trình đường thẳng a là:

\(1\left( {x + 1} \right) + 1\left( {y - 0} \right) = 0 \Leftrightarrow x + y + 1 = 0\)

c) Ta có: \(\overrightarrow {{u_a}}  = \overrightarrow {{n_\Delta }}  = \left( {1;1} \right)\).Từ đó suy ra \(\overrightarrow {{n_b}}  = \left( {1; - 1} \right)\). Phương trình đường thẳng b là:

\(1\left( {x - 0} \right) - 1\left( {y - 3} \right) = 0 \Leftrightarrow x - y + 3 = 0\)

Bình luận (0)