Những câu hỏi liên quan
NK
Xem chi tiết
H24
Xem chi tiết
NL
19 tháng 1 2021 lúc 12:32

\(\dfrac{1}{sin2k}=\dfrac{sink}{sink.sin2k}=\dfrac{\left(sin2k-k\right)}{sink.sin2k}=\dfrac{sin2k.cosk-cos2k.sink}{sink.sin2k}\)

\(=\dfrac{cosk}{sink}-\dfrac{cos2k}{sin2k}=cotk-cot2k\)

Do đó pt tương đương:

\(cot\dfrac{x}{2}-cotx+cotx-cot2x+...+cot2^{2017}x-cot^{2018}x=0\)

\(\Leftrightarrow cot\dfrac{x}{2}-cot2^{2018}x=0\)

\(\Leftrightarrow\dfrac{x}{2}=2^{2018}x+k\pi\)

\(\Leftrightarrow...\)

Bình luận (1)
H24
19 tháng 1 2021 lúc 12:21

@Nguyễn VIệt Lâm giúp em với

Bình luận (0)
PB
Xem chi tiết
CT
1 tháng 6 2018 lúc 4:03

3sin2x – 4sinx.cosx + 5cos2x = 2

⇔ 3sin2x – 4sinx.cosx + 5cos2x = 2(sin2x + cos2x)

⇔ sin2x – 4sinx.cosx + 3 cos2x = 0 (1)

+ Xét cosx = 0 ⇒ sin2x = 1.

Phương trình (1) trở thành 1 = 0 (Vô lý).

+ Xét cos x ≠ 0. Chia hai vế phương trình cho cos2x ta được

Giải bài 4 trang 37 sgk Đại số 11 | Để học tốt Toán 11

Vậy phương trình có tập nghiệm 

Giải bài 4 trang 37 sgk Đại số 11 | Để học tốt Toán 11 (k ∈ Z)

Bình luận (0)
BH
Xem chi tiết
NL
21 tháng 1 2021 lúc 0:09

ĐKXĐ: \(x\ne\dfrac{k\pi}{2}\)

\(\dfrac{cosx}{sinx}-1=\dfrac{cos^2x-sin^2x}{1+\dfrac{sinx}{cosx}}+sin^2x-sinx.cosx\)

\(\Leftrightarrow\dfrac{cosx-sinx}{sinx}=cosx\left(cosx-sinx\right)-sinx\left(cosx-sinx\right)\)

\(\Leftrightarrow\left(cosx-sinx\right)\left(\dfrac{1}{sinx}-cosx+sinx\right)=0\)

\(\Leftrightarrow\left(cosx-sinx\right)\left(1-sinx.cosx+sin^2x\right)=0\)

\(\Leftrightarrow\left(cosx-sinx\right)\left(3-sin2x-cos2x\right)=0\)

\(\Leftrightarrow\left(cosx-sinx\right)\left(3-\sqrt{2}sin\left(2x+\dfrac{\pi}{4}\right)\right)=0\)

Bình luận (0)
DN
Xem chi tiết
NL
28 tháng 6 2021 lúc 21:35

1. 

ĐKXĐ: \(x\ne k\pi\)

\(\Leftrightarrow\left(2cos2x-1\right)\left(sinx-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}cos2x=\dfrac{1}{2}\\sinx=3>1\left(ktm\right)\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}2x=\dfrac{\pi}{3}+k2\pi\\2x=-\dfrac{\pi}{3}+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{6}+k\pi\\x=-\dfrac{\pi}{6}+k\pi\end{matrix}\right.\)

Bình luận (0)
NL
28 tháng 6 2021 lúc 21:43

2. Bạn kiểm tra lại đề, pt này về cơ bản ko giải được.

3.

ĐKXĐ: \(x\ne\dfrac{k\pi}{2}\)

\(\dfrac{3\left(sinx+\dfrac{sinx}{cosx}\right)}{\dfrac{sinx}{cosx}-sinx}-2cosx=2\)

\(\Leftrightarrow\dfrac{3\left(1+cosx\right)}{1-cosx}+2\left(1+cosx\right)=0\)

\(\Leftrightarrow\left(1+cosx\right)\left(\dfrac{3}{1-cosx}+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}cosx=-1\left(loại\right)\\cosx=\dfrac{5}{2}\left(loại\right)\end{matrix}\right.\)

Vậy pt đã cho vô nghiệm

Bình luận (1)
NL
28 tháng 6 2021 lúc 21:45

4.

\(\Leftrightarrow\left(sin^2x+cos^2x+2sinx.cosx\right)+\left(sinx+cosx\right)+\left(cos^2x-sin^2x\right)=0\)

\(\Leftrightarrow\left(sinx+cosx\right)^2+\left(sinx+cosx\right)+\left(sinx+cosx\right)\left(cosx-sinx\right)=0\)

\(\Leftrightarrow\left(sinx+cosx\right)\left(sinx+cosx+1+cosx-sinx\right)=0\)

\(\Leftrightarrow\sqrt{2}sin\left(x+\dfrac{\pi}{4}\right)\left(2cosx+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sin\left(x+\dfrac{\pi}{4}\right)=0\\cosx=-\dfrac{1}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{\pi}{4}+k\pi\\x=\dfrac{2\pi}{3}+k2\pi\\x=-\dfrac{2\pi}{3}+k2\pi\end{matrix}\right.\)

Bình luận (0)
PB
Xem chi tiết
CT
25 tháng 7 2018 lúc 3:06

Đáp án B

Sử dụng phương pháp giải phương trình đẳng cấp bậc 2 đối với sin và cos bằng cách chia cả 2 vế phương trình cho  cos 2 x

Bình luận (0)
CH
Xem chi tiết
AM
21 tháng 7 2021 lúc 9:29

Bình luận (0)
NS
27 tháng 9 2021 lúc 19:46

Ko bt làm

Bình luận (0)
PB
Xem chi tiết
CT
13 tháng 1 2017 lúc 8:51

Bình luận (0)
SK
Xem chi tiết
NH
17 tháng 5 2017 lúc 15:07

Đối với những phương trình lượng giác chứa \(\tan x,\cot x,\sin2x\) hoặc \(\cos2x\) ta có thể đưa về phương trình chứa \(\cos x,\sin x,\sin2x\) hoặc \(\cos2x\). Ngoài ra ta có thể đặt ẩn phụ \(t=\tan x\) để đưa về phương trình theo t :

Hàm số lượng giác, phương trình lượng giác

Hàm số lượng giác, phương trình lượng giác

Bình luận (0)
CL
18 tháng 5 2017 lúc 21:57

bổ sung cho bạn kia cái đk
đk: sin2x # 0
<=> 2x # kπ
<=> x # kπ/2
4cos^2(2x) - 2cos2x - 2 = 0
tới đây giải tiếp sẽ ra 2 nghiệm là
cos2x = 1 hoặc cos2x = -1/2
nghiệm cos2x = 1 loại vì cos2x = 1 thì sin2x = 0 ( mâu thuẫn với điều kiện ) ai không hiểu thì vẽ cái đường tròn ra là biết ngay

Bình luận (0)