Chứng minh các đẳng thức:
a) sin 8 x cos 6 x - cos 8 x sin 6 x 1 - cos 2 x = c o t x
b) tan x sin π + x + sin x tan π 2 - x 1 - sin 2 x = cos x
Chứng minh các đẳng thức:
a) \({\cos ^4}\alpha - {\sin ^4}\alpha = 2{\cos ^2}\alpha - 1\);
b) \(\frac{{{{\cos }^2}\alpha + {{\tan }^2}\alpha - 1}}{{{{\sin }^2}\alpha }} = {\tan ^2}\alpha \).
a)
Ta có:
\({\cos ^4}\alpha {\sin ^4}\alpha = \left( {{{\cos }^2}\alpha - {{\sin }^2}\alpha } \right)\left( {{{\cos }^2}\alpha + {{\sin }^2}\alpha } \right) \\= {\cos ^2}\alpha - {\sin ^2}\alpha = {\cos ^2}\alpha - (1 - {\cos ^2}\alpha ) \\= {\cos ^2}\alpha - 1 + {\cos ^2}\alpha = 2{\cos ^2}\alpha - 1\)
(đpcm)
b)
Ta có:
\(\frac{{{{\cos }^2}\alpha + {{\tan }^2}\alpha - 1}}{{{{\sin }^2}\alpha }} = \frac{{{{\cos }^2}\alpha \; + {{\tan }^2}\alpha - {{\sin }^2}\alpha - {{\cos }^2}\alpha }}{{{{\sin }^2}\alpha }} \\= \frac{{{{\tan }^2}\alpha - {{\sin }^2}\alpha }}{{{{\sin }^2}\alpha }} = \frac{{\frac{{{{\sin }^2}\alpha }}{{{{\cos }^2}\alpha }} - {{\sin }^2}\alpha }}{{{{\sin }^2}\alpha }} \\= \frac{1}{{{{\cos }^2}\alpha }} - 1 = {\tan ^2}\alpha \)
(đpcm)
Chứng minh các đẳng thức sau
a. $1-\dfrac{{{\sin }^{2}}x}{1+\cot x}-\dfrac{{{\cos }^{2}}x}{1+\tan \,x}=\sin \,x.\,\cos x$ .
b. $\dfrac{{{\sin }^{2}}x+2\,\cos x-1}{2+\cos x-{{\cos }^{2}}x}=\dfrac{\cos x}{1+\cos x}$ .
a) Ta có: \(1-\frac{\sin^2x}{1+\cot x}-\frac{\cos^2x}{1+\tan x}=1-\frac{\sin^2x}{1+\frac{\cos x}{\sin x}}-\frac{\cos^2x}{1+\frac{\sin x}{\cos x}}\) (Đk: sinx và cosx khác 0)
\(=1-\frac{\sin^3x}{\sin x+\cos x}-\frac{\cos^3x}{\cos x+\sin x}\)
\(=1-\frac{\left(\sin x+\cos x\right)\left(\sin^2x-\sin x.\cos x+\cos^2x\right)}{\sin x+\cos x}\)
\(=1-\left(\sin^2x+\cos^2x-\sin x.\cos x\right)\) (do sinx + cosx luôn khác 0)
\(=\sin x.\cos x\) ( do \(\sin^2x+\cos^2x=1\))
b) Ta có: \(\frac{\sin^2x+2\cos x-1}{2+\cos x-\cos^2x}=\frac{\left(\sin^2x-1\right)+2\cos x}{-\left(\cos x+1\right)\left(\cos x-2\right)}\) (Đk: cosx khác -1 và 2)
\(=\frac{-\cos x\left(\cos x-2\right)}{-\left(\cos x+1\right)\left(\cos x-2\right)}\)
\(=\frac{\cos x}{1+\cos x}\)
a) Ta có: 1−sin2x1+cotx −cos2x1+tanx =1−sin2x1+cosxsinx −cos2x1+sinxcosx (Đk: sinx và cosx khác 0)
=1−sin3xsinx+cosx −cos3xcosx+sinx
=1−(sinx+cosx)(sin2x−sinx.cosx+cos2x)sinx+cosx
=1−(sin2x+cos2x−sinx.cosx) (do sinx + cosx luôn khác 0)
=sinx.cosx ( do sin2x+cos2x=1)
b) Ta có: sin2x+2cosx−12+cosx−cos2x =(sin2x−1)+2cosx−(cosx+1)(cosx−2) (Đk: cosx khác -1 và 2)
=−cosx(cosx−2)−(cosx+1)(cosx−2)
=cosx1+cosx
Chứng minh đẳng thức:
\(\frac{\sin^2x}{\sin x-\cos x}-\frac{\sin x+\cos x}{\tan^2x-1}=\sin x+\cos x\)
\(\frac{\sin^2x}{\sin x-\cos x}-\frac{\sin x+\cos x}{\tan^2x-1}\)
\(=\frac{\sin^2x}{\sin x-\cos x}-\frac{\sin x+\cos x}{\frac{\sin^2x-\cos^2x}{\cos^2x}}\)
\(=\frac{\sin^2x}{\sin x-\cos x}-\frac{\cos^2x}{\sin x-\cos x}=\sin x+\cos x\)
Xong
Chứng minh các hệ thức:
a) \(\dfrac{cos\text{ α }}{1-sin\text{ α}}=\dfrac{1+sin\text{ α}}{cos\text{ α}}\)
b)\(\dfrac{\left(sin\text{ α }+cos\text{ α }\right)^2-\left(sin\text{ α }-cos\text{ α }\right)^2}{sin\text{ α }cos\text{ α }}=4\)
a: \(\dfrac{\cos\alpha}{1-\sin\alpha}=\dfrac{1+\sin\alpha}{\cos\alpha}\)
\(\Leftrightarrow\cos^2\alpha=1-\sin^2\alpha\)(đúng)
b: Ta có: \(\dfrac{\left(\sin\alpha+\cos\alpha\right)^2-\left(\sin\alpha-\cos\alpha\right)^2}{\sin\alpha\cdot\cos\alpha}\)
\(=\dfrac{4\cdot\sin\alpha\cdot\cos\alpha}{\sin\alpha\cdot\cos\alpha}\)
=4
chứng minh các đẳng thức sau : a) \(\frac{1+2sinxcosx}{sin^2x-cos^2x}\) = \(\frac{tan+1}{tan-1}\) ; b) sin4x - cos4x = 1 - 2cos2x ; c) sin4x + cos4x = \(\frac{3}{4}\) + \(\frac{1}{4}\)cosx ; d) sin6x + cos6x = \(\frac{5}{8}\) + \(\frac{3}{8}\)cos4x ; e) cotx - tanx = 2cot2x ; f) \(\frac{sin2x+sin4x+sin6x}{1+cos2x+cos4x}\) = 2sin2x
Cho 0* < x <90*. Chứng minh đẳng thức sau:
\(\dfrac{\sin x+\cos x-1}{1-\cos x}=\dfrac{2\cos x}{\sin x-\cos x+1}\)
tam thoi cho ban dung
<=>(sinx+cosx-1)/(1-cosx+sinx+cosx-1)=(2cosx)/(sinx-cosx+1+2cosx)
<=>(sinx+cosx-1)/sinx=2cosx/(sinx+cosx+1)
x€(0;π/2)=> sinx ≠0; sinx+cosx+1≠0
<=>(sinx+cosx-1)(sinx+cosx+1)=2sinxcosx
<=>(sinx+cosx)^2-1=2sinxcosx
<=>(sin^2x+cos^2+2sinxcos)-1=2sinxcosx
<=>1+2sinxcosx-1=2sinxcosx
<=>2sinxcosx=2sinxcosx
moi bd <=>=> ban dung =>dpcm
ta có : \(0^o< x< 90^o\) \(\Rightarrow sinx-cosx+1>0\) và ta luôn có \(1-cosx>0\) \(\Rightarrow\) biểu thức trên được xác định
\(\Rightarrow\dfrac{sinx+cos-1}{1-cosx}=\dfrac{2cosx}{sinx-cos+1}\)
\(\Leftrightarrow\left(sinx+cosx-1\right)\left(sinx-cosx+1\right)=2cosx\left(1-cosx\right)\)
\(\Leftrightarrow\left(sinx+\left(cosx-1\right)\right)\left(sinx-\left(cosx-1\right)\right)=2cosx\left(1-cosx\right)\)
\(\Leftrightarrow sin^2x-\left(cosx-1\right)^2=2cosx-2cos^2x\)
\(\Leftrightarrow sin^2x-cos^2x+2cosx-1=2cosx-2cos^2x\)
\(\Leftrightarrow sin^2x-cos^2x+2cosx-sin^2x-cos^2x=2cosx-2cos^2x\)\(\Rightarrow2cosx-2cos^2x=2cosx-cos^2x\) \(\Rightarrow\left(đpcm\right)\)
Cho 0* < x <90*. Chứng minh đẳng thức sau:
\(\dfrac{\sin x+\cos x-1}{1-\cos x}=\dfrac{2\cos x}{\sin x-\cos x+1}\)
\(\dfrac{sinx+cosx-1}{1-cosx}=\dfrac{2cosx}{sinx-cosx+1}\)
\(\Leftrightarrow sin^2x-\left(cosx-1\right)^2=2cosx\left(1-cosx\right)\)
\(\Leftrightarrow sin^2x-cos^2x+2cosx-1=2cosx-2cos^2x\)
\(\Leftrightarrow sin^2x+cos^2x-1=0\)
\(\Leftrightarrow1-1=0\) đúng
Chứng minh các đẳng thức sau(giả sử các biểu thức sau đều có nghĩa)
a) $\sin ^{4} x+\cos ^{4} x=1-2 \sin ^{2} x \cdot \cos ^{2} x$.
b) $\dfrac{1+\cot x}{1-\cot x}=\dfrac{\tan x+1}{\tan x-1}$.
c) $\dfrac{\cos x+\sin x}{\cos ^{3} x}=\tan ^{3} x+\tan ^{2} x+\tan x+1$.
\(a)sin^4x+cos^4x=1-2sin^2x\cdot cos^2x\)
\(\Leftrightarrow sin^4x+2sin^2x\cdot cos^2x+cos^4x=1\)
\(\Leftrightarrow\left(sin^2x+cos^2x\right)^2=1\)(luôn đúng)
a)
b)
c)
a) VT=(sin2x + cos 2 x)2 - 2sin2 x . cos2 x = VP
b) VT= \(\dfrac{1+\dfrac{1}{tanx}}{1-\dfrac{1}{tanx}}\)=VP
c) VT= \(\dfrac{1}{cos^2x}+\dfrac{sinx}{cosx}.\dfrac{1}{cos^2x}=1+tan^2x+tanx.\left(1+tan^2x\right)=VP\)
chứng minh các đẳng thức sau :
a) \(\frac{1+2\sin x\cos x}{\sin^2x-\cos^2x}\)=\(\frac{\tan x+1}{\tan x-1}\)
b) \(\sin\)4x + \(\cos\)4x =\(\frac{3}{4}\)+\(\frac{1}{4}\)\(\cos\)x
c) \(\sin\)6x + \(\cos\)6x = \(\frac{5}{8}\) + \(\frac{1}{8}\)\(\cos\)4x
d) \(\cot\)x - \(\tan\)x = 2\(\cot\)2x
cho mình hỏi: chứng minh đẳng thức này: \(\sin^2x\left(1+\cot x\right)x+\cos^2\left(1+\tan x\right)=\left(\sin x+\cos x\right)^2\)có thể giải bằng cách lấy VT - VP = 0 có dc ko và tại sao ?
chứng minh đẳng thức này \(\frac{\sin x+\cos x-1}{\sin x-\cos x+1}=\frac{\cos x}{1+\sin x}\) có thể quy đồng rồi lấy VT - VP = 0 có dc ko và tại sao ?
Thanks nhiều