Tìm phương trình chính tắc của elip nếu nó đi qua điểm A 2 ; 3 và tỉ số của độ dài trục lớn với tiêu cự bằng 2 3
A. x 2 16 + y 2 4 = 1.
B. x 2 4 + y 2 3 = 1.
C. x 2 3 + y 2 4 = 1.
D. x 2 4 + y 2 16 = 1.
Tìm phương trình chính tắc của elip nếu nó có trục lớn gấp đôi trục bé và đi qua điểm M(2; -2).
A. x 2 20 + y 2 5 = 1.
B. x 2 36 + y 2 9 = 1.
C. x 2 24 + y 2 6 = 1.
D. x 2 16 + y 2 4 = 1.
Tìm phương trình chính tắc của elip nếu nó đi qua điểm A 2 ; 3 và tỉ số của độ dài trục lớn với tiêu cự bằng 2 3
A. x 2 16 + y 2 4 = 1.
B. x 2 4 + y 2 3 = 1.
C. x 2 8 + y 2 6 = 1.
D. x 2 4 + y 2 16 = 1.
Gọi phương trình chính tắc của elip là: x 2 a 2 + y 2 b 2 = 1
Vì elip đi qua điểm A 2 ; 3 do đó thay tọa độ điểm A vào ta được
4 a 2 + 3 b 2 = 1 (1)
Theo đề bài tỉ số của độ dài trục lớn và tiêu cực là
2 a 2 c = a c = 2 3 ⇔ a = 2 c 3 ⇔ 3 a 2 = 4 c 2
Mà c 2 = a 2 - b 2 ta có 3 a 2 = 4 a 2 - b 2 ⇔ a 2 - 4 b 2 = 0 (2)
Bài 9: Tìm phương trình chính tắc của elip nếu nó đi qua điểm A(6; 0) và tỉ số của tiêu cự với độ dài trục lớn bằng .
Giải giúp mình với cái này khó hiểu lắm
Tiêu cự là \(2c\), độ dài trục lớn là \(2a\) \(\Rightarrow\dfrac{2c}{2a}=\dfrac{1}{2}\Rightarrow a=2c\) (1)
Phương trình elip có dạng:
\(\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}=1\Leftrightarrow\dfrac{x^2}{a^2}+\dfrac{y^2}{a^2-c^2}=1\) (2)
Thay (1) vào (2):
\(\Leftrightarrow\dfrac{x^2}{4c^2}+\dfrac{y^2}{3c^2}=1\) (3)
Do elip qua A, thay tọa độ A vào (3):
\(\Rightarrow\dfrac{6^2}{4c^2}+\dfrac{0}{3c^2}=1\Rightarrow c=3\) \(\Rightarrow a=2c=6\)
\(\Rightarrow b^2=a^2-c^2=27\)
Vậy pt elip là: \(\dfrac{x^2}{36}+\dfrac{y^2}{27}=1\)
viết phương trình chính tắc của elip các trường hợp sau 1. elip đi qua điểm M(0;3) và có tiêu điểm F2(5;0) 2. Elip đi qua hai điểm A(7;0), B(0;3) 3. Elip đi qua hai điểm A(0;1), N(1; căn 3 / 2)
1: (E): x^2/a^2+y^2/b^2=1
Thay x=0 và y=3 vào (E), ta được:
3^2/b^2=1
=>b^2=9
=>b=3
F2(5;0)
=>c=5
=>\(\sqrt{a^2-9}=5\)
=>a^2-9=25
=>a^2=34
=>\(a=\sqrt{34}\)
=>x^2/34+y^2/9=1
2: Thay x=7 và y=0 vào (E), ta được:
7^2/a^2+0^2/b^2=0
=>a^2=49
=>a=7
Thay x=0 và y=3 vào (E), ta được:
0^2/a^2+3^2/b^2=1
=>b^2=9
=>b=3
=>(E): x^2/49+y^2/9=1
3: Thay x=0 và y=1 vào (E), ta được:
1/y^2=1
=>y=1
=>(E): x^2/a^2+y^2/1=1
Thay x=1 và y=căn 3/2 vào (E), ta được:
1^2/a^2+3/4=1
=>1/a^2=1/4
=>a^2=4
=>a=2
=>(E); x^2/4+y^2/1=1
Tìm phương trình chính tắc của Elip đi qua điểm (6; 0) và có tâm sai bằng 1/2
A.
B.
C.
D.
Do tâm sai của ( E) là 1/2 nên
mà Elip qua điểm (6;0) nên a= 6
=> c= 3 => b2= a2- c2= 36- 9= 27
Vậy
Chọn A.
Tìm phương trình chính tắc của Elip có trục lớn gấp đôi trục bé và đi qua điểm (2;-2).
Đáp án D
Gọi phương trình chính tắc của Elip có dạng:
Theo đề bài: Trục lớn gấp đôi trục bé nên a= 2b => a2= 4b2
Điểm (2; -2) thuộc Elip:
Ta được hệ:
Vậy phương trình (E) cần tìm là :
Viết phương trình chính tắc của elip đi qua điểm A(0;-4) và có 1 tiêu điểm F2(3;0)
Gọi ptr chính tắc của `(E)` có dạng: `[x^2]/[a^2]+[y^2]/[b^2]=1`
Thay `A(0;-4)` vào `(E)` có:
`16/[b^2]=1<=>b^2=16`
Vì `F_2 (3;0)=>c=3=>c^2=9`
Ta có: `a^2=b^2+c^2`
`<=>a^2=16+9`
`<=>a^2=25`
Vậy ptr chính tắc của `(E)` là: `[x^2]/25+[y^2]/16=1`
Viết phương trình chính tắc của elip đi qua điểm A(0;-4) và có 1 tiêu điểm F2(3;0)
viết phương trình chính tắc của elip đi qua điểm A(0;-4) và có 1 tiêu điểm F2(3;0)
\(\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}=1\)(E)
Thay x=0 và y=-4 vào (E), ta được:
16/b^2=1
=>b=4
F2(3;0)
=>c=3
=>căn a^2-16=3
=>a^2-16=9
=>a=5
=>x^2/25+y^2/16=1