Cho tam giac ABC vuong tai A co I la trung diem BC
CM:tinh AI
cho tam giac ABC vuong tai A, M la trung diem cua BC. Goi I la trung diem cua AB, K la diem doi xung voi M qua I.
a) Tu giac AMBK la hinh gi? Vi sao?
b) Tu giac AKMC la hinh gi? Vi sao?
c) Tam giac ABC co dieu kien gi de tu giac AMBK la hinh vuong. Cho BC = 6cm, hay tinh chu vi hinh vuong AMBK
a: Xét tứ giac AMBK có
I là trung điểm của AB
I làtrung điểm của MK
Do đó:AMBK là hình bình hành
mà MA=MB
nên AMBK là hình thoi
b: Xét tứ giác AKMC có
AK//MC
AC//MK
Do đó: AKMC là hình bình hành
c: Để AMBK là hình vuông thì AM\(\perp\)BM
=>ΔABC cân tại A
=>AB=AC
cho tam giac ABC vuong tai A, M la trung diem cua BC. Goi I la trung diem cua AB, K la diem doi xung voi M qua I.
a) Tu giac AMBK la hinh gi? Vi sao?
b) Tu giac AKMC la hinh gi? Vi sao?
c) Tam giac ABC co dieu kien gi de tu giac AMBK la hinh vuong. Cho BC = 6cm, hay tinh chu vi hinh vuong AMBK
a: Xét tứ giác AMBK có
I là trung điểm của BA
I là trung điểm của MK
Do đó:AMBK là hình bình hành
mà MA=MB
nên AMBK là hình thoi
b: Xét tứ giác AKMC có
MK//AC
MK=AC
Do đó: AKMC là hình bình hành
c: Để AMBK là hình vuông thì AM⊥BM
=>AM\(\perp\)BC
hay ΔABC vuông cân tại A
Cho tam giac ABC vuong tai A co goc B = 60° .Ve AH vuong goc voi BC tai H A/Tinh goc HAB B/Tren canh AC lay D sao cho AD=AH .Goi I la trung diem cua canh HD. C/M tam giac AHI= tam giac ADI . Tu do suy ra AI vuong goc voi HD C/Tia AI cat canh HC tai diem K .C/M tam giac AHK=tam giac ADK.Tu do suy ra AB//KD D/Tren tia doi cua tia HA lay E sao cho HE=AH.C/M H la trung diem cua BK va 3 diem D,E,K thang hang
a: \(\widehat{HAB}=90^0-60^0=30^0\)
b: Xét ΔAHI và ΔADI có
AH=AD
HI=DI
AI chung
Do đó: ΔAHI=ΔADI
Ta có: ΔAHD cân tại A
mà AI là đường trung tuyến
nên AI là đường cao
c: Xét ΔAHK và ΔADK có
AH=AD
\(\widehat{HAK}=\widehat{DAK}\)
AK chung
Do đó: ΔAHK=ΔADK
Suy ra: \(\widehat{AHK}=\widehat{ADK}=90^0\)
=>DK//AB
cho tam giac abc vuong tai a co b=60 do.ve ah vuong goc voi bc tai h. a,tinh so do goc hab.b,tren canh ac lay diem d sao cho ad=ah.goi i la trung diem cua canh hd.chung minh tam giac ahi=tam giac adi
cho tam giac abc vuong tai a,co ab=3cm,ac=4cm.
a)tinh bc va so sanhcac goc cua tam giac abc
b)ke ah vuong goc voi bc,lay d tren bc sao cho h la trung diem cua bd.cm:tam giac abd can tai a
c)tren ah lay m sao cho h la trung diem cua am.cm:tam giac abm la tam giac can
a: BC=5cm
Xét ΔABC có AB<AC<BC
nên \(\widehat{C}< \widehat{B}< \widehat{A}\)
b: Xét ΔABD có
AH là đường cao
AH là đường trung tuyến
Do đó: ΔABD cân tại A
cho tam giac ABC vuong tai A ,co AC=2AB.lay D la trung diem cua AC .dung AH,CK vuong goc voii BC.
a) cm; goc ABC = goc CDK va tam giac AHB = tam giac CKD
b) cm : DA= DC =DH va KH = KC
c) goi I la trung diem cua BD . Cm: tam giac AHI = tam giac KHI tu do tinh soo do goc IHK
d ) duong thang di qua A song song voi BC cat DK tai M. cm : H , I , M thang hang
e) duong thang AI cat BC tai N . cm : NK =
Bạn ơi mình nghĩ bạn viết đề vậy thì khó vẽ được cái hình.
Sao lại \(CK\perp AB\) được. Mình nghĩ là \(CK\perp AB\) chứ? nguyen phuong tram
Sao lại \(CK\perp BC\) được. Mình nghĩ là \(CK\perp AB\) nhé. nguyen phuong tram
Cho tam giac ABC vuong tai C (AC <BC).tia phan giac cua goc A cat BC tai I.Tu B ke duong vuong góc voi AI tai H. Tu I ke duong vuong goc voi IK (K la trung diem cua AB) cat AC tai M va cat BH tai N.chung minh I la trung diểm của MN
cho tam giac ABC vuong tai A co AC = 2AB . goi D la trung diem cua AC . dung AH , DK vuong goc voi BC
a ) cm ; goc ABC = goc CDK va tam giac AHB = tam giac CKD
b ) cm ; DA =DC =DH va KH = KC
c) goi I la trung diem cua BD . CM ; tam giac AHI = tam giac KHI , tu do tinh so do goc IHK
d ) duong thang qua A song song voi BC cat DK tai M . cm ; H , I , M thang hang
e ) duong thag AI cat BC tai N , cm: NK = 2NH
Cho tam giac ABC can tai A co AB> BC . ke AH vuong goc BC tai H
a) CM tam giac AHB = tam giac AHC va H la trung diem BC
b) Goi M la trung diem AB . Qua A ke duong thang song song BC , cat tia HM tai D . Gia su AB = 6,5 cm , AD = 2,5 cm . CM AD= BH
va tinhtinh do dai AH ( ve hinh giup mik voi )