Tìm giá trị nhỏ nhất của phân thức B = 2 x 2 - 16 x + 41 x 2 - 8 x + 22
cho B=(x^2-16)+/y-3/-2. tìm giá trị nguyên của x và y để biểu thức có giá trị nhỏ nhất
B = (x2 - 16) + |y - 3| - 2
B = x2 - 16 - 2 + |y + 3|
B = x2 - 18 + |y + 3|
Ta có :
x2 \(\ge0\)
|y + 3| \(\ge0\)
=> x2 + |y + 3| \(\ge0\)
=> x2 - 16 + |y + 3| \(\le16\)
\(\Leftrightarrow\hept{\begin{cases}x^2=0\\\left|y+3\right|=0\end{cases}\Rightarrow\hept{\begin{cases}x=0\\y=-3\end{cases}}}\)
Ta có: \(x^2\ge0\Rightarrow x^2-16\ge-16\)
Mà \(\left|y-3\right|\ge0\)
\(\Rightarrow\left(x^2-16\right)+\left|y-3\right|\ge-16\)
\(\Rightarrow B=\left(x^2-16\right)+\left|y-3\right|-2\ge-18\)
Dấu " = " khi \(\hept{\begin{cases}x^2-16=0\\y-3=0\end{cases}}\Rightarrow\hept{\begin{cases}x=4;x=-4\\y=3\end{cases}}\)
Vậy MIN B = -18 khi x = -4 hoặc x = 4 và y = 3
xin lỗi bạn, x = 0 nhé, mk nhìn nhầm...
Tìm giá trị nhỏ nhất của các phân thức sau
\(B=\dfrac{x^2-2x+2016}{x^2}\)
Ta có:
\(B=\dfrac{x^2-2x+2016}{x^2}\left(x\ne0\right)\)
\(B=\dfrac{x^2}{x^2}-\dfrac{2x}{x^2}+\dfrac{2016}{x^2}\)
\(B=1-\dfrac{2}{x}+\dfrac{2016}{x^2}\)
\(B=2016\left(\dfrac{1}{x^2}-\dfrac{1}{2016}\cdot\dfrac{2}{x}+\dfrac{1}{2016}\right)\)
\(B=2016\cdot\left(\dfrac{1}{x^2}-2\cdot\dfrac{1}{2016}\cdot\dfrac{1}{x}+\dfrac{1}{2016}\right)\)
\(B=2016\left(\dfrac{1}{x^2}-2\cdot\dfrac{1}{2016}\cdot\dfrac{1}{x}+\dfrac{1}{4064256}+\dfrac{2015}{4064256}\right)\)
\(B=2016\left[\dfrac{1}{x^2}-2\cdot\dfrac{1}{2016}\cdot\dfrac{1}{x}+\dfrac{1}{4064256}\right]+2016\cdot\dfrac{2015}{4064256}\)
\(B=2016\cdot\left(\dfrac{1}{x}-\dfrac{1}{2016}\right)^2+\dfrac{2015}{2016}\)
Ta có: \(2016\cdot\left(\dfrac{1}{x}-\dfrac{1}{2016}\right)^2\ge0\forall x\)
\(\Rightarrow2016\cdot\left(\dfrac{1}{x}-\dfrac{1}{2016}\right)^2+\dfrac{2015}{2016}\ge\dfrac{2015}{2016}\forall x\)
Dấu "=" xảy ra khi:
\(2016\cdot\left(\dfrac{1}{x}-\dfrac{1}{2016}\right)^2+\dfrac{2015}{2016}=\dfrac{2015}{2016}\)
\(\Leftrightarrow2016\cdot\left(\dfrac{1}{x}-\dfrac{1}{2016}\right)^2=0\)
\(\Leftrightarrow\dfrac{1}{x}-\dfrac{1}{2016}=0\)
\(\Leftrightarrow\dfrac{1}{x}=\dfrac{1}{2016}\)
\(\Leftrightarrow x=2016\left(tm\right)\)
Vậy: \(B_{min}=\dfrac{2015}{2016}\Leftrightarrow x=2016\)
Tìm giá trị nhỏ nhất của biểu thức
a. B=|x- 2006| -|2007- x|
b. C= y^2 +|x-16|-9
a)|x- 2006| -|2007- x|
Áp dụng Bđt \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) ta có:
\(\left|x-2006\right|-\left|2007-x\right|\ge\left|x-2006-2007-x\right|=4013\)
Dấu = khi \(\left(x-2006\right)\left(2007-x\right)\ge0\)
\(\Rightarrow2006\le x\le2007\)
\(\Rightarrow\begin{cases}2006\le x\le2007\\\left(x-2006\right)\left(2007-x\right)=0\end{cases}\)\(\Rightarrow\begin{cases}x=2006\\x=2007\end{cases}\)
Vậy MinB=4013 khi x=2006 hoặc x=2007
b)Ta có:\(\begin{cases}y^2\\\left|x-16\right|\end{cases}\ge0\)
\(\Rightarrow y^2+\left|x-16\right|-9\ge0-9=-9\)
\(\Rightarrow C\ge-9\)
Dấu = khi \(\begin{cases}y^2=0\\\left|x-16\right|=0\end{cases}\)\(\Rightarrow\begin{cases}x=16\\y=0\end{cases}\)
Vậy MinC=-9 khi x=16 và y=0
a/Tìm x để biểu thức sau có giá trị nhỏ nhất: (x^2)+x+1.
b/Tìm giá trị nhỏ nhất của biểu thức: A=y*(y+1)*(y+2)*(y+3).
c/Phân tích đa thức thành nhân tử: (x^3)+(y^3)+(z^3)-(3*x*y*z)
.
BÀI 2 a, x2+x+1=(x2+1/2*2*x+1/4)-1/4+1=(x+1/2)2 +3/4
MÀ (x+1/2)2>=0 với mọi giá trị của x .Dấu"=" xảy ra khi x+1/2=0 =>x=-1/2
=>(x+1/2)2+3/4>=3/4 với mọi giá trị của x .Dấu "=" xảy ra khi x=-1/2
=>x2+x+1 có giá trị nhỏ nhất là 3/4 khi x=-1/2
b,A=y(y+1)(y+2)(y+3)
=>A =[y(y+3)] [(y+1)(y+2)]
=>A=(y2+3y) (y2+3y+2)
Đặt X=y2+3y+1
=>A=(X+1)(X-1)
=>A=X2-1
=>A=(y2+3y+1)2-1
MÀ (y2+3y+1)2>=0 với mọi giá trị của y
=>(y2+3y+1)2-1>=-1
Vậy GTNN của Alà -1
c,B=x3+y3+z3-3xyz
=>B=(x3+y3)+z3-3xyz
=>B=(x+y)3-3xy(x+y)+z3-3xyz
=>B=[(x+y)3+z3]-3xy(x+y+z)
=>B=(x+y+z)(x2+2xy+y2-xz-yz+z2)-3xy(x+y+z)
=>B=(x+y+z)(x2+2xy+y2-xz-yz+z2-3xy)
=>B=(x+y+z)(x2+y2+z2-xy-xz-yz)
Tìm giá trị nhỏ nhất của biểu thức: D=x^2+y^2-4(x+y)+16
\(D=x^2+y^2-4x-4y+16\)
\(D=\left(x^2-4x+4\right)+\left(y^2-4y+4\right)+8\)
\(D=\left(x-2\right)^2+\left(y-2\right)^2\ge8\)
\("="\Leftrightarrow x=y=2\)
P=(6x-5y-16)^2+x^2+y^2+2xy+x+y+2.Tìm giá trị nhỏ nhất của biểu thức
Tìm giá trị nhỏ nhất của các đa thức sau
\(x^2-8x-16\)
\(x^2-8x-16=x^2-2.4x+16-32=\left(x-4\right)^2-32\ge-32\)
Dấu "=" xảy ra \(\Leftrightarrow\) \(x-4=0\Leftrightarrow x=4\)
Vậy GTNN của biểu thức là -32 khi x = 4
Ta có:
\(x^2-8x-16\)
⇔ ( \(x^2-2.x.4+4^2\) )\(-16\)
⇔ \(\left(x-4\right)^2-16\)
Do \(\left(x-4\right)^2\ge0\) ⇒ \(\left(x-4\right)^2-16\ge-16\)
Dấu " = " xảy ra khi x - 4 = 0 ⇔ x = 4
Vậy GTNN của A = -16 khi x = 4
Ta có: \(x^2-8x-16\)
\(=x^2-8x+16-32\)
\(=\left(x-4\right)^2-32\ge-32\forall x\)
Dấu '=' xảy ra khi x=4
a, Tìm giá trị nhỏ nhất của biểu thức
A = | x+5|+|x+2|+|x+7|+|x-8|
b,Tìm giá trị nhỏ nhất của biểu thức
B= |x+3|+|x-2|+|x-5|
c,Tìm giá trị lớn nhất của biểu thức
C= |x+5|-|x-2|
giải cụ thể nha
ta có
\(A=\left|x-8\right|+\left|x+2\right|+\left|x+5\right|+\left|x+7\right|\ge\left|-x+8-x-2+x+5+x+7\right|=18\)
Dấu bằng xảy ra khi \(-5\le x\le-2\)
\(B=\left|x+3\right|+\left|x-5\right|+\left|x-2\right|\ge\left|x+3-x+5\right|+\left|x-2\right|=8+\left|x-2\right|\ge8\)
Dấu bằng xảy ra khi \(x=2\)
\(C=\left|x+5\right|-\left|x-2\right|\le\left|x+5+2-x\right|=7\)
Dấu bằng xảy ra khi \(x\ge2\)
Nguyễn Minh Quang sai dấu câu A rồi
tìm giá trị nguyên của x để biểu thức có giá trị nhỏ nhất A = |x-12|+|y+9|+1997 B= (x^2 -16)+|y-3|-2 C=(5x-19)/(x-4)
Bài 9: Cho biểu thức: [(4/x-4)-(4/x-4)].(x^2+8x+16/32)
a) Tìm điều kiện của x để phân thức xác định?
b) Tìm giá trị của x để phân thức có giá trị bằng 1/3
c) Tìm giá trị của x để phân thức có giá trị bằng 1
d) Tìm giá trị nguyên của x để phân thức có giá trị nguyên?
e) Tìm giá trị của x để phân thức luôn dương?