Chứng minh phân thức 2 n + 1 2 n 2 - 1 là tối giản với mọi số tự nhiên n
Chứng minh rằng n7+n2+1/n8+n+1 chưa phải là phân thức tối giản
Chứng minh rằng phân thức A = \(\dfrac{n+3}{n+2}\) tối giản
Tính giá trị của biểu thức A tại x = -2
ĐK:n≠-2
Gọi \(d=ƯCLN\left(n+3,n+2\right)\)
\(\Rightarrow n+3⋮d;n+2⋮d\\ \Rightarrow n+3-n-2⋮d\\ \Rightarrow1⋮d\\ \Rightarrow d=1\)
Vậy n+3 và n+2 nctn hay \(\dfrac{n+3}{n+2}\) tối giản
Với n=-2 trái vs ĐKXĐ nên A ko xác định
Chứng minh phân thức 3 n + 1 5 n + 2 (với n ∈ N) là tối giản
Hướng dẫn giải:
Gọi ƯCLN của 2n + 1 và 5n + 3 là d
⇒ (3n + 1) ⋮ d và (5n + 2) ⋮ d
⇒ [3(5n + 2) - 5(3n + 1)] ⋮ d
⇒ 1 ⋮ d, với ∀n ∈ N
⇒ d = 1 hoặc d = -1
Vậy phân thức đã cho tối giản với ∀n ∈ N
Bài 1: Cho phân thức : P = (x+1/x-1 + 1-3x/x^3+x) : x-1/x^2+1. a)Tìm điều kiện của x để giá trị của phân thức được xác định.
b)Rút gọn P.Tính giá trị của P tại x = 6.
c) Tìm x để phân thức có giá trị là số nguyên.
Bài 2: Chứng minh đẳng thức : 1/n(n+1)=1/n - 1/n+1; Tính : a + a^2/1-a + 1/a+1.
Cho biểu thức \(f\left(x\right)=5^{\sqrt{1+\dfrac{1}{x^2}+\dfrac{1}{\left(x+1\right)^2}}}\), với x>0. Biết rằng f(1).f(2)...f(2020) = \(5^{\dfrac{m}{n}}\) với m, n là các số nguyên dương và phân số m/n tối giản. Chứng minh m-n^2 = -1
\(\sqrt{1+\dfrac{1}{x^2}+\dfrac{1}{\left(x+1\right)^2}}=\sqrt{\dfrac{x^2+\left(x+1\right)^2+x^2\left(x+1\right)^2}{x^2\left(x+1\right)^2}}=\sqrt{\dfrac{x^2\left(x+1\right)^2+2x^2+2x+1}{x^2\left(x+1\right)^2}}\)
\(=\sqrt{\dfrac{\left(x^2+x\right)^2+2\left(x^2+x\right)+1}{\left(x^2+x\right)^2}}=\sqrt{\dfrac{\left(x^2+x+1\right)^2}{\left(x^2+x\right)^2}}=\dfrac{x^2+x+1}{x^2+x}\)
\(=1+\dfrac{1}{x}-\dfrac{1}{x+1}\)
\(\Rightarrow f\left(1\right).f\left(2\right)...f\left(2020\right)=5^{1+1-\dfrac{1}{2}+1+\dfrac{1}{2}-\dfrac{1}{3}+...+1+\dfrac{1}{2020}-\dfrac{1}{2021}}\)
\(=5^{2021-\dfrac{1}{2021}}\)
\(\Rightarrow\dfrac{m}{n}=2021-\dfrac{1}{2021}=\dfrac{2021^2-1}{2021}\)
\(\Rightarrow m-n^2=2021^2-1-2021^2=-1\)
chứng minh phân số sau là phân số tối giản: \(\dfrac{2.n^2+n+1}{n}\)
1Đặt UCLN(\(2n^2\) + n + 1;n) = d
=> \(2n^2\) + n + 1 ⋮ d ; n ⋮ d
=> (2n + 1) n ⋮ d
<=>\(2n^2\) + n ⋮ d
<=>(2n2 + n + 1) - (2n2 + n) ⋮ d
<=> 1⋮d
=> d ϵƯ(1)=1
=>UCLN(\(2n^2\) + n + 1;n) =1
=>dpcm
hum biết nhe
khó qué
tui mới L4
HIHI
a) Cho biểu thức A=3/2+n n khác -2 Tìm các số nguyên n để A là một số nguyên.
b) Chứng minh phân số n+6/n=7 là phân số tối giản với mọi số n nguyên và n khác -7 .
a: Để A nguyên thì \(n+2\in\left\{1;-1;3;-3\right\}\)
=>\(n\in\left\{-1;-3;1;-5\right\}\)
b: n+6/n+7
Gọi d=ƯCLN(n+6;n+7)
=>n+6-n-7 chiahết cho d
=>-1 chia hết cho d
=>d=1
=>PSTG
1/ cho biểu thức a=5/n-1;(n thuoc so nguyen)
tìm điều kiện của n để a là phân số tìm tất cả giá trị nguyên của n để a àl số nguyên
2/ chứng minh phân số n/n+1 tối giản
3/ chứng tỏ: 1/1x2+1/2x3+1/3x4+...+1/49x50 < 1
1, cho a và b là 2 số tự nhiên. Biết a chia cho 3 dư 1 , b chia cho 3 dư 2. Chứng minh rằng ab chia cho 3 dư 2
2, chứng minh rằng biểu thức n(2n-3)-2n(n+1) luôn chia hết cho 5 với mọi số nguyên n
3, chứng minh rằng biểu thức (n-1)(3-2n)-n(n+5) chia hết cho 3 với mọi giá trị của n
BN thử vào câu hỏi tương tự xem có k?
Nếu có thì bn xem nhé!
Nếu k thì xin lỗi đã làm phiền bn
Hội con 🐄 chúc bạn học tốt!!!
Chứng minh phân thức sau tối giản với mọi số tự nhiên n: \(\frac{3n^2+5n+1}{8n^2+7n+1}\)
Gọi d là UCLN của \(3n^2+5n+1\left(and\right)8n^2+7n+1\)
\(\Rightarrow\hept{\begin{cases}3n^2+5n+1⋮d\\8n^2+7n+1⋮d\end{cases}=>8\left(3n^2+5n+1\right)-3\left(8n^2+7n+1\right)⋮d}\)
\(\Rightarrow24n^2+40n+8-24n^2-21n-3⋮d\)
\(=>19n-5⋮d\)
do 19 zà 5 là số nguyên tố =>không chia hết cho d
=>p.số tối giản