Tìm đa thức M biết:
a) 2 x 6 - x 4 - 2 x 2 +1 = M.(2 x 2 -1);
b) ( x 2 +x + 1).M = x 4 - x 3 - 4 x 2 - 5x - 3.
(Nghỉ dịch từ ngày 28/2/2022)
Bài 1:
a) Cho hai đa thức: M = 2x2 – 2xy – 3y2 + 1; N = x2 – 2xy + 3y2 – 1
Tính M + N; M – N.
b) Cho hai đa thức: P(x) = x3 – 6x + 2; Q(x) = 2x2 - 4x3 + x - 5
+ Tính P(x) + Q(x)
+ Tính P(x) - Q(x)
Bài 2: Tìm x biết:
a) (x - 8 )( x3+ 8) = 0; b) (4x - 3) – ( x + 5) = 3(10 - x)
Bài 3: Cho đa thức: P(x) = 5x3 + 2x4 – x2 + 3x2 – x3 – 2x4 + 1 – 4x3.
a) Thu gọn và xắp sếp các hạng tử của đa thức trên theo lũy thừa giảm của biến.
b) Tính P(1) và P(–1).
Bài 4: Tính nhanh (nếu có thể):
Bài 5: Cho tam giác ABC có AB = AC = 5cm, BC = 6cm. Đường trung tuyến AM xuất phát từ đỉnh A của tam giác ABC.
a) Chứng minh ΔAMB = ΔAMC và AM là tia phân giác của góc A.
b) Chứng minh AM vuông góc với BC.
c) Tính độ dài các đoạn thẳng BM và AM.
d) Từ M vẽ ME AB (E thuộc AB) và MF AC (F thuộc AC). Tam giác MEF là tam giác gì? Vì sao?
Bài 6: Cho ΔABC cân có AB = AC = 5cm, BC = 8cm. Kẻ AH vuông góc với BC.
a) Chứng minh: HB = HC.
b) Tính độ dài AH.
c) Kẻ HD vuông góc với AB (D∈AB), kẻ HE vuông góc với AC (E∈AC).
Chứng minh ΔHDE cân.
d) So sánh HD và HC.
Bài 2:
a: \(\left(x-8\right)\left(x^3+8\right)=0\)
=>\(\left[{}\begin{matrix}x-8=0\\x^3+8=0\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}x=8\\x^3=-8\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=8\\x=-2\end{matrix}\right.\)
b: \(\left(4x-3\right)-\left(x+5\right)=3\left(10-x\right)\)
=>\(4x-3-x-5=30-3x\)
=>3x-8=30-3x
=>6x=38
=>\(x=\dfrac{38}{6}=\dfrac{19}{3}\)
Bài 6:
a: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có
AB=AC
AH chung
Do đó: ΔAHB=ΔAHC
=>HB=HC
b: Ta có: HB=HC
H nằm giữa B và C
Do đó: H là trung điểm của BC
=>\(HB=HC=\dfrac{8}{2}=4\left(cm\right)\)
ΔAHB vuông tại H
=>\(AH^2+HB^2=AB^2\)
=>\(AH^2=5^2-4^2=9\)
=>\(AH=\sqrt{9}=3\left(cm\right)\)
c: Ta có: ΔAHB=ΔAHC
=>\(\widehat{BAH}=\widehat{CAH}\)
Xét ΔADH vuông tại D và ΔAEH vuông tại E có
AH chung
\(\widehat{DAH}=\widehat{EAH}\)
Do đó: ΔADH=ΔAEH
=>HD=HE
=>ΔHDE cân tại H
d: Ta có: HD=HE
HE<HC(ΔHEC vuông tại E)
Do đó:HD<HC
Bài 1. Phân tích các đa thức sau thành nhân tử:
a) 8x3-2x c) -5m3(m+1)+m+1
Bài 7. Tìm x, biết:
a) 2-x=2(x-2)3 b) 8x3-72x=0
d) 2x3+3x2+3+2x=0
Bài 1:
a: \(8x^3-2x=2x\left(4x^2-1\right)=2x\left(2x-1\right)\left(2x+1\right)\)
c: \(-5m^3\left(m+1\right)+m+1=\left(m+1\right)\left(-5m^3+1\right)\)
Bài 1: Viết các đa thức sau dưới dạng bình phương của một tổng hoặc một hiệu:
a) a2-6a+9 b) 1/4 x2+2xy2+4y4
Bài 2: Tìm x, biết:
a) (3x-5)(5-3x)+9(x+1)2=30
b) (x+4)2-(x+1)(x-1)=16
Bài 1:
a) \(a^2-6a+9=\left(a-3\right)^2\)
b) \(\dfrac{1}{4}x^2+2xy^2+4y^4=\left(\dfrac{1}{2}x+2y^2\right)^2\)
Bài 2:
a) \(\Leftrightarrow-9x^2+30x-25+9x^2+18x+9=30\)
\(\Leftrightarrow48x=46\Leftrightarrow x=\dfrac{23}{24}\)
b) \(\Leftrightarrow x^2+8x+16-x^2+1=16\)
\(\Leftrightarrow8x=-1\Leftrightarrow x=-\dfrac{1}{8}\)
Bài 1: Tìm x , Biết
a) (x-4) x - (x-3)^2=0
b) 3x-6 = x^2-16
c) (2x-3)^2 - 49=0
d) 2x (x-5) - 7 (5-x)=0
Bài 2: Tìm m để đa thức
A(x)= 2x^3 + x^2 - 4x + m chia hết cho đa thức B(x)= 2x-1
Bài 3 : Phân tích đa thức thành nhân tử
a) x^2 - 8x
b) x^2 - xy - 6x + 6y
Bài 1:
b: \(3x-6=x^2-16\)
\(\Leftrightarrow x^2-3x-10=0\)
\(\Leftrightarrow\left(x-5\right)\left(x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=5\\x=-2\end{matrix}\right.\)
Cho hai đa thức:
\(A(x) = 4{x^4} + 6{x^2} - 7{x^3} - 5x - 6\) và \(B(x) = - 5{x^2} + 7{x^3} + 5x + 4 - 4{x^4}\).
a) Tìm đa thức M(x) sao cho \(M(x) = A(x) + B(x)\).
b) Tìm đa thức C(x) sao cho \(A(x) = B(x) + C(x)\).
a) \(M(x) = A(x) + B(x) \\= 4{x^4} + 6{x^2} - 7{x^3} - 5x - 6 - 5{x^2} + 7{x^3} + 5x + 4 - 4{x^4} \\=(4x^4-4x^4)+(-7x^3+7x^3)+(6x^2-5x^2)+(-5x+5x)+(-6+4)\\= {x^2} - 2.\)
b) \(A(x) = B(x) + C(x) \Rightarrow C(x) = A(x) - B(x)\)
\(\begin{array}{l}C(x) = A(x) - B(x)\\ = 4{x^4} + 6{x^2} - 7{x^3} - 5x - 6 - ( - 5{x^2} + 7{x^3} + 5x + 4 - 4{x^4})\\ = 4{x^4} + 6{x^2} - 7{x^3} - 5x - 6 + 5{x^2} - 7{x^3} - 5x - 4 + 4{x^4}\\ =(4x^4+4x^4)+(-7x^3-7x^3)+(6x^2+5x^2)+(-5x-5x)+(-6-4)\\= 8{x^4} - 14{x^3} + 11{x^2} - 10x - 10\end{array}\)
Cho đa thức \(M(x) = 2{x^4} - 5{x^3} + 7{x^2} + 3x\).
Tìm các đa thức N(x), Q(x) sao cho:
\(N(x) - M(x) = - 4{x^4} - 2{x^3} + 6{x^2} + 7\)
và \(M(x) + Q(x) = 6{x^5} - {x^4} + 3{x^2} - 2\)
Theo đề bài ta có \(M(x) = 2{x^4} - 5{x^3} + 7{x^2} + 3x\)
\(\begin{array}{l}M(x) + Q(x) = 6{x^5} - {x^4} + 3{x^2} - 2\\ \Rightarrow Q(x) = (6{x^5} - {x^4} + 3{x^2} - 2) - (2{x^4} - 5{x^3} + 7{x^2} + 3x)\\ \Rightarrow Q(x) = 6{x^5} - {x^4} + 3{x^2} - 2 - 2{x^4} + 5{x^3} - 7{x^2} - 3x\\Q(x) = 6{x^5} - 3{x^4} + 5{x^3} - 4{x^2} - 3x - 2\end{array}\)
Theo đề bài ta có :
\(\begin{array}{l}N(x) - M(x) = - 4{x^4} - 2{x^3} + 6{x^2} + 7\\ \Rightarrow N(x) = - 4{x^4} - 2{x^3} + 6{x^2} + 7 + 2{x^4} - 5{x^3} + 7{x^2} + 3x\\ \Rightarrow N(x) = - 2{x^4} - 7{x^3} + 13{x^2} + 3x + 7\end{array}\)
1 phân tích đa thứ thành nhân tử:
a)6x^3y^2-12x^3y^4+18x^3y^5
b)3xy+y^2+6x+2y
2 tìm x biết:a)6x(x-8)=0
b)x^2+6x-6=0
3 cho biểu thức 3(x^3+y):(x^2-2xy+y^2)và thay x =2 và y=5
Bài 1: Rút gọn biểu thức:
a) 2x(3x-5)-6x2 b) (x+3)(1-x)+(x-2)(x+2) c) (3x+1)2-(1+3x)(6x-2)+(3x-1)2
Bài 2: Phân tích đa thức thành nhân tử:
a) 9x2-1 b) 2(x-1)+x2-x c) 3x2+14x-5
Bài 3: Tìm x biết:
a) 2x(x-1)-2x2=4 b) x(x-3)-(x+2)(x-1)=5 c) 4x2-25+(2x+5)2=0
Bài 4: Cho tam giác ABC , có D là trung điểm đoạn thẳng BC , E là trung điểm của AB lấy điểm F đối xứng với điểm D qua E .
a) Chứng minh tứ giác FADB là hình bình hành.
b) Kẻ FG vuông với AB ; DH vuông với AB ; (G;HϵAB). Chứng minh FD=AC;\(\widehat{BFH}\)=\(\widehat{ADG}\).
c) Vẽ điểm Q đối xứng với điểm C qua A , DQ cắt đoạn AB tại điểm I , M là trung điểm AD.
Chứng minh F , M , I thẳng hàng
2:
a: \(9x^2-1=\left(3x\right)^2-1=\left(3x-1\right)\left(3x+1\right)\)
b: \(2\left(x-1\right)+x^2-x\)
\(=2\left(x-1\right)+x\left(x-1\right)\)
\(=\left(x-1\right)\left(x+2\right)\)
c: \(3x^2+14x-5\)
\(=3x^2+15x-x-5\)
\(=3x\left(x+5\right)-\left(x+5\right)=\left(x+5\right)\left(3x-1\right)\)
3:
a: \(2x\left(x-1\right)-2x^2=4\)
=>\(2x^2-2x-2x^2=4\)
=>-2x=4
=>x=-2
b: \(x\left(x-3\right)-\left(x+2\right)\left(x-1\right)=5\)
=>\(x^2-3x-\left(x^2+x-2\right)=5\)
=>\(x^2-3x-x^2-x+2=5\)
=>-4x=3
=>x=-3/4
c: \(4x^2-25+\left(2x+5\right)^2=0\)
=>\(\left(2x-5\right)\left(2x+5\right)+\left(2x+5\right)^2=0\)
=>\(\left(2x+5\right)\left(2x-5+2x+5\right)=0\)
=>4x(2x+5)=0
=>\(\left[{}\begin{matrix}x=0\\x=-\dfrac{5}{2}\end{matrix}\right.\)
giúp với ạ
cho đa thức :A(x)=x^4-4x^3+2x^2-5x+6.
a, tính giá trị đa thức A(x) biết |4x-1|=1 .
b, tìm đa thức B(x) biết : a(x) -b(x) = 3x^2-x-3x^3-x^2+x^4-2x^2+6 .
c, tìm nghiêm đa thức B(x)
Tìm m để đa thức A chia hết cho B biết:
A=2x^3+5x^2+3x+m+5
B=x+3
\(\Leftrightarrow2x^3+6x^2-x^2-3x+6x+18+m-13⋮x+3\)
hay m=13