Những câu hỏi liên quan
NA
Xem chi tiết
MB
Xem chi tiết
NT
1 tháng 8 2023 lúc 20:23

a: \(=\sqrt{x-3-2\sqrt{x-3}+3}\)

\(=\sqrt{x-3-2\sqrt{x-3}+1+2}=\sqrt{\left(\sqrt{x-3}-1\right)^2+2}>=\sqrt{2}\)

Dấu = xảy ra khi x-3=1

=>x=4

 

Bình luận (0)
H24
Xem chi tiết
H24
30 tháng 3 2018 lúc 21:52

Ta có:

\(A=\sqrt{\left(x-3\right)^2+2\left(y+1\right)^2}+\sqrt{\left(x+1\right)^2+3\left(y+1\right)^2}\)

Áp dụng bđt Minkowski, ta có:

\(\Rightarrow A=\sqrt{\left(x-3\right)^2+2\left(y+1\right)^2}+\sqrt{\left(x+1\right)^2+3\left(y+1\right)^2}\)

\(A=\sqrt{\left(3-x\right)^2+2\left(y+1\right)^2}+\sqrt{\left(x+1\right)^2+3\left(y+1\right)^2}\)\(\ge\sqrt{\left(3-x+x+1\right)^2+\left(\sqrt{2}+\sqrt{3}\right)^2\left(y+1\right)^2}\)

\(A=\sqrt{4^2+\left(\sqrt{2}+\sqrt{3}\right)^2\left(y+1\right)^2}\ge\sqrt{4^2}=4\)

\(\Rightarrow A\ge4.Đ\text{TXR}\Leftrightarrow\orbr{\begin{cases}x=1;y=-1\\x=3;y=-1\end{cases}}\)

Dấu "=" xảy ra khi (x; y) = (3; -1)

Bình luận (0)
LN
Xem chi tiết
DH
30 tháng 8 2017 lúc 19:57

Cần chứng minh bđt : \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\)

\(\Leftrightarrow\left(\left|a\right|+\left|b\right|\right)^2=\left(\left|a+b\right|\right)^2\)

\(\Leftrightarrow a^2+2\left|ab\right|+b^2\ge a^2+b^2+2ab\)

\(\Leftrightarrow\left|ab\right|\ge ab\) (luôn đúng)

Từ đó áp dụng ta được :

\(A\ge\sqrt{\left(x^2-6x+2y^2+4y+11\right)+\left(x^2+2x+3y^2+6y+4\right)}\)

\(\Leftrightarrow A\ge\sqrt{2x^2-4x+5y^2+10y+15}\)

\(\Leftrightarrow A\ge\sqrt{\left(2x^2-4x+2\right)+\left(5y^2+10y+5\right)+8}\)

\(\Leftrightarrow A\ge\sqrt{2\left(x-1\right)^2+5\left(y+1\right)^2+8}\ge\sqrt{8}=2\sqrt{2}\) có gtnn là \(2\sqrt{2}\)

Dấu "=" xảy ra \(\Leftrightarrow x=1;y=-1\)

Bình luận (0)
NL
Xem chi tiết
CA
Xem chi tiết
CA
Xem chi tiết
H24
8 tháng 7 2019 lúc 21:33

\(A=\sqrt{2x^2-4x+3}+3\)

Ta có: \(2x^2-4x+3\)

\(=2\left(x^2-2x+\frac{3}{2}\right)\)

\(=2\left(x^2-2.x.1+1^2+\frac{1}{2}\right)\)

\(=2[\left(x-1\right)^2+\frac{1}{2}]\)

\(=2\left(x-1\right)^2+1\ge1\)

\(\Rightarrow\sqrt{2\left(x-1\right)^2+1}\ge\sqrt{1}\)

\(\Rightarrow\sqrt{2\left(x-1\right)^2+1}+3\ge3+\sqrt{1}=4\)

\(\Rightarrow MinA=4\Leftrightarrow x=1\)

Bình luận (0)
CP
Xem chi tiết
AH
29 tháng 12 2018 lúc 17:17

Lời giải:

Biến đổi biểu thức kết hợp với áp dụng BĐT dạng \(|a|+|b|\geq |a+b|\) ta có:

\(\text{VT}=\sqrt{x^2+2y^2-6x+4y+11}+\sqrt{x^2+3y^2+2x+6y+4}\)

\(=\sqrt{(x^2-6x+9)+2(y^2+2y+1)}+\sqrt{(x^2+2x+1)+3(y^2+2y+1)}\)

\(=\sqrt{(x-3)^2+2(y+1)^2}+\sqrt{(x+1)^2+3(y+1)^2}\)

\(\geq \sqrt{(x-3)^2}+\sqrt{(x+1)^2}=|x-3|+|x+1|=|3-x|+|x+1|\)

\(\geq |3-x+x+1|=4\)

Dấu "=" xảy ra khi :

\(\left\{\begin{matrix} (y+1)^2=0\\ (3-x)(x+1)\geq 0\end{matrix}\right.\) \(\Leftrightarrow \left\{\begin{matrix} y=-1\\ -1\leq x\leq 3\end{matrix}\right.\)

Bình luận (0)
FA
Xem chi tiết