Chứng minh:
a) 15 n + 15 n + 2 hết cho 113 với mọi số tự nhiên n;
b) n 4 – n 2 chia hết cho 4 với mọi số nguyên n.
Chứng minh:
15n + 15n+2 chia hết cho 113 với mọi số tự nhiên n
\(15^n+15^{n+2}=15^n\left(1+15^2\right)\)
\(=15^n.226=15^n.2.113\)
Vậy \(15^n+15^{n+2}\)chia hết cho 113 với mọi số tự nhiên n.
Hok tốt! k mk nha^^
\(15^n+15^{n+2}=15^n\left(1+15^2\right)\)
\(=15^n\cdot226=15^n\cdot2\cdot113⋮113\forall n\left(dpcm\right)\)
15^n + 15^n+2
=15^n * 1 + 15^n * 15^2
=15^n * (1 + 15^2)
=15^n * 226 =15^n * 2 *113
Vậy 15^n + 15^n+2 chia hết cho 113
Bài 1 :
a, 15^n + 15^n+2 chia hết cho 113 với mọi số tự nhiên n
b, n^4 - n^2 chia hết cho 4 với mọi số tự nhiên n
c, 50^n+2 - 50^n+1 chia hết cho 245 với mọi số tự nhiên n
d, n^3 - n chia hết cho 6 vs mọi số nguyên n
b) Ta có: \(n^4-n^2=n^2\left(n^2-1\right)=n\cdot n\cdot\left(n-1\right)\cdot\left(n+1\right)\)
*Trường hợp 1: n chia 2 dư 1
\(\Leftrightarrow\left\{{}\begin{matrix}n-1⋮2\\n+1⋮2\end{matrix}\right.\)
\(\Leftrightarrow n\cdot n\cdot\left(n-1\right)\left(n+1\right)⋮4\)
hay \(n^4-n^2⋮4\)(1)
*Trường hợp 2: n chia hết cho 2
\(\Leftrightarrow n^2⋮4\)
\(\Leftrightarrow n\cdot n\cdot\left(n-1\right)\left(n+1\right)⋮4\)
hay \(n^4-n^2⋮4\)(2)
Từ (1) và (2) suy ra \(n^4-n^2⋮4\forall n\in N\)(đpcm)
d) Ta có: \(n^3-n=n\left(n^2-1\right)=n\left(n-1\right)\left(n+1\right)\)
Ta có: n và n-1 là hai số tự nhiên liên tiếp
\(\Leftrightarrow n\cdot\left(n-1\right)⋮2\)
\(\Leftrightarrow n\cdot\left(n-1\right)\cdot\left(n+1\right)⋮2\)
\(\Leftrightarrow n^3-n⋮2\)(3)
Ta có: n, n-1 và n+1 là ba số tự nhiên liên tiếp
\(\Leftrightarrow n\cdot\left(n-1\right)\cdot\left(n+1\right)⋮3\)
\(\Leftrightarrow n^3-n⋮3\)(4)
Từ (3), (4) và ƯCLN(3,2)=1 suy ra \(n^3-n⋮3\cdot2\)
hay \(n^3-n⋮6\forall n\in N\)
a) Ta có: \(15^n+15^{n+2}=15^n+15^n\cdot225\)
\(=15^n\cdot\left(1+225\right)=15^n\cdot226=2\cdot15^n\cdot113⋮113\forall n\in N\)
c) Ta có: \(50^{n+2}-50^{n+1}\)
\(=50^n\cdot2500-50^n\cdot50\)
\(=50^n\cdot\left(2500-50\right)=50^n\cdot2450\)
\(=10\cdot50^n\cdot245⋮245\forall n\in N\)(đpcm)
Bài 6
a, chứng minh rằng với mọi số tự nhiên n thuộc N thì 60n +15 chia hết cho 15 nhưng không chia hết cho 30
b, chứng minh rằng không có số tự nhiên nào chia 15 dư 6 , chia 9 dư 1
c, chứng minh rằng 1005a +2100b chia hết cho 15 , với mọi số tự nhiên a,b thuộc N
d, chứng minh rằng A= n2+n+1 không chia hết cho 2 và 5 với mọi số tự nhiên n thuộc N
a,60 chia hết cho 15 => 60n chia hết cho 15 ; 45 chia hết cho 15 => 60n+45 chia hết cho 15 (theo tính chất 1)
60n chia hết cho 30 ; 45 không chia hết cho 30 => 60n+45 không chia hết cho 30 (theo tính chất 2)
b,Giả sử có số a thuộc N thoả mãn cả 2 điều kiện đã cho thì a=15k+6 (1) và a=9q+1.
Từ (1) suy ra a chia hết cho 3, từ (2) suy ra a không chia hết cho 3. Đó là điều vô lí. Vậy không có số tự nhiên nào thoả mãn đề.
c,1005 chia hết cho 15 => 1005a chia hết cho 15 (1)
2100 chia hết cho 15 => 2100b chia hết cho 15 (2)
Từ (1) và (2) suy ra 1005a+2100b chia hết cho 15 (theo tính chất 1)
d,Ta có : n^2+n+1=nx(n+1)+1
nx(n+1) là tích của 2 số tự nhiên liên tiếp nên chia hết cho 2 suy ra nx(n+1)+1 là một số lẻ nên không chia hết cho 2.
nx(n+1) là tích của 2 số tự nhiên liên tiếp nên không có tận cùng là 4 hoặc 9 nên nx(n+1)+1 không có tận cùng là 0 hoặc 5, do đó nx(n+1)+1 không chia hết cho 5.
Mình xin trả lời ngắn gọn hơn! a)60 chia hết cho 15=> 60n chia hết cho 15 15 chia hết cho 15 =>60n+15 chia hết cho 15. 60 chia hết cho 30=>60n chia hết cho 30 15 không chia hết cho 30 =>60n+15 không chia hết cho 30 b)Gọi số tự nhiên đó là A Giả sử A thỏa mãn cả hai điều kiện => A= 15.x+6 & = 9.y+1 Nếu A = 15x +6 => A chia hết cho 3 Nếu A = 9y+1 => A không chia hết cho 3 => vô lí.=> c) Vì 1005;2100 chia hết cho 15=> 1005a; 2100b chia hết cho 15. => 1500a+2100b chia hết cho 15. d) A chia hết cho 2;5 => A chia hết cho 10. => A là số chẵn( cụ thể hơn là A là số có c/s tận cùng =0.) Nếu n là số chẵn => A là số lẻ. (vì chẵn.chẵn+chẵn+lẻ=lẻ) Nếu n là số lẻ => A là số lẻ (vì lẻ.lẻ+lẻ+lẻ=lẻ) => A không chia hết cho 2;5
Chứng tỏ rằng:n.(n+15) chia hết cho 2 với mọi số tự nhiên n
TH1 : n là số chẵn
→ n chia hết cho 2
→ n có dạng 2k
→ n . ( n + 15 )
= 2k . ( n + 15 ) chia hết cho 2 ( Vì 2k chia hết cho 2 )
→ n . ( n + 15 ) chia hết cho 2
TH2 : n là số lẻ
→ n chia 2 dư 1
→ n có dạng 2k + 1
→ n . ( n + 15 )
= n . ( 2k + 1 + 15 )
= n . ( 2k + 16 )
= 2n . ( k + 8 ) chia hết cho 2 ( Vì 2n chia hết cho 2 )
→ n . ( n + 15 ) chia hết cho 2
Vậy n . ( n + 15 ) chia hết cho 2 ∀ n ∈ N ( Điều phải chứng minh )
chứng tỏ rằng n ^ 2 + n + 1 không chia hết cho 15 với mọi số tự nhiên n
chia hết cho 15 tức là chia hết cho 3 và 5
n^2 +n+1= n(n+1)+1
mà n(n+1) là số tự nhiên liên tiếp nên chia hết cho 3,5
=> n(n=1)+1 ko chia hết ho 3 và 5
tức là chia hết cho 15
Chứng tỏ rằng với mọi số tự nhiên n thì tích (n+10)(n+15) chia hết cho 2
Ta có 2 trường hợp :
TH1 : n lẻ :
Nếu n lẻ thỉ (n + 15) chẵn => (n + 15) chia hết cho 2 => (n + 10)(n + 15) chia hết cho 2
TH2 : n chẵn
Nếu n chẵn thì (n + 10) chẵn => (n + 10) chia hết cho 2 => (n + 10)(n + 15) chia hết cho 2.
Vậy với mọi số tự nhiên n thì tích (n + 10)(n + 15) luôn chia hết cho 2 (đpcm)
Vì n là số tự nhiên => n=2k;2k+1
Xét n=2k
=> (n+10)(n+15)
= (2k+10)(2k+15)
= 2.(k+5)(2k+15) chia hết cho 2
Xét n=2k+1
=> (n+10)(n+15)
= (2k+1+10)(2k+1+15)
= (2k+11).(2k+16)
= (2k+11).2.(k+8) chia hết cho 2
Vậy (n+10)(n+15) luôn chia hết cho 2 với mọi n
chứng tỏ rằng A = n^2 + n +1 không chia hết cho 15 với mọi số tự nhiên n
A = n2 + n +1
= n . n + n + 1
= n.(n+1)+1
n.(n+1) là 2 số tự nhiên liên tiếp
mà chữ số tận cùng cửa tích 2 số tự nhiên liên tiếp là : 0;2;3
=> n(n+1) + 1 có chữ số tận là : 1;3;4
=> A ko chia hết cho 5 với mọi n
=> A ko chia hết cho 15 với mọi n
chứng tỏ n^2+n+1 ko chia hết cho 15 với mọi số tự nhiên n
chứng minh A= n2+n+1 không chia hết cho 15 với mọi số tự nhiên n