Tính giá trị của biểu thức:
a) M = 3 a 2 − 2 a 2 − 2 a − 1 3 ( − a − 3 ) tại a = -2;
b) N = ( 25 x 2 + 10 xy + 4 y 2 ) ( 5 x - 2 y ) tại x = 1 5 và y = 1 2 .
Tính giá trị của biểu thức:
a) \(M = 2(a + b)\) tại \(a = 2\), \(b = - 3\);
b) \(N = - 3xyz\) tại \(x = - 2\), \(y = - 1\), \(z = 4\);
c) \(P = - 5{x^3}{y^2} + 1\) tại \(x = - 1\); \(y = - 3\).
a) Thay giá trị \(a = 2\), \(b = - 3\) vào biểu thức đã cho, ta có:
\(M = 2(a + b) = 2.(2 + ( - 3)) = 2.(2 - 3) = 2.( - 1) = - 2\).
b) Thay giá trị \(x = - 2\), \(y = - 1\), \(z = 4\) vào biểu thức đã cho, ta có:
\(N = - 3xyz = ( - 3). (- 2). (- 1).4 = 6. (- 1).4 = ( - 6).4 = - 24\).
c) Thay giá trị \(x = - 1\); \(y = - 3\) vào biểu thức đã cho, ta có:
\(P = - 5{x^3}{y^2} + 1 = - 5.{( - 1)^3}.{( - 3)^2} + 1 = (- 5). (- 1).9 + 1 = 5.9 + 1 = 45 + 1 = 46\).
Cho biểu thức:
A= (\(\dfrac{x+2}{x-2}\)- \(\dfrac{4x^2}{4-x^2}\)- \(\dfrac{x-2}{x+2}\)) : \(\dfrac{x^3+x^2+2x}{x-2}\)
a) Tính giá trị của A khi |x+3|=5
b) Tìm các giá trị của x để A nhận giá trị nguyên
a: \(A=\dfrac{x^2+4x+4+4x^2-x^2+4x-4}{\left(x-2\right)\left(x+2\right)}\cdot\dfrac{x-2}{x\left(x^2+x+2\right)}\)
\(=\dfrac{4x^2+8x}{\left(x+2\right)}\cdot\dfrac{1}{x\left(x^2+x+2\right)}=\dfrac{4}{x^2+x+2}\)
|x+3|=5
=>x=2(loại) hoặc x=-8(nhận)
Khi x=-8 thì \(A=\dfrac{4}{64-8+2}=\dfrac{4}{58}=\dfrac{2}{29}\)
b: A nguyên
=>x^2+x+2 thuộc {1;-1;2;-2;4;-4}
=>x^2+x+2=2 hoặc x^2+x+2=4
=>x^2+x-2=0 hoặc x(x+1)=0
=>\(x\in\left\{1;0;-1\right\}\)
tính giá trị của biểu thức:
a) A= \(2\dfrac{1}{3}\)+\(\dfrac{5}{7}+\dfrac{2}{3}-\dfrac{7}{12}+2,5\)
\(A=\dfrac{7}{3}+\dfrac{5}{7}+\dfrac{2}{3}-\dfrac{7}{12}+\dfrac{5}{2}=3+\dfrac{221}{84}=\dfrac{473}{84}\)
Cho biểu thức:A=6,8×(a+1,5)-0,96
a) Tính giá trị của A khi a=3, 2
b) Tìm giá trị của a để A=9, 24
GIÚP TUI ĐI MAMAMOO
Bài 10: Cho biểu thức:A=x^2-1/x^2+3x+2
a, Tìm ĐKXĐ của x
b, Tính giá trị của phân thức tại x=2020
c, Tính giá trị của x để A=0
\(a,ĐK:x\ne-1;x\ne-2\\ b,A=\dfrac{\left(x-1\right)\left(x+1\right)}{\left(x+1\right)\left(x+2\right)}=\dfrac{x-1}{x+2}\\ x=2020\Leftrightarrow A=\dfrac{2019}{2022}=\dfrac{673}{674}\\ c,A=0\Leftrightarrow x-1=0\Leftrightarrow x=1\left(tm\right)\)
Tính giá trị nhỏ nhất của biểu thức:
A= 2x\(^2\) + 2\(\sqrt{2x}\) + 3
\(A=2x^2+2\sqrt{2}x+3\\ =2\left(x^2+\sqrt{2}x+\dfrac{3}{2}\right)\\ =2.\left(x^2+2.\dfrac{1}{\sqrt{2}}x+\dfrac{1}{2}+1\right)\\ =2.\left(x^2+2.\dfrac{1}{\sqrt{2}}x+\dfrac{1}{2}\right)+2\\ =2.\left(x+\dfrac{1}{\sqrt{2}}\right)^2+2\)
Ta có \(2.\left(x+\dfrac{1}{\sqrt{2}}\right)^2\ge0\forall x\)
\(2.\left(x+\dfrac{1}{\sqrt{2}}\right)^2+2\ge2\forall x\)
Dấu bằng xảy ra khi : \(x+\dfrac{1}{\sqrt{2}}=0\\ \Rightarrow x=\dfrac{-\sqrt{2}}{2}\)
Vậy \(Min_A=2\) khi \(x=\dfrac{-\sqrt{2}}{2}\)
Cho 2 biểu thức:
A= x2-x+5 và B= (x-1)(x+2)-x(x-2)-3x
a) Tính giá trị biểu thức A khi x =2
b) Chứng minh B= -2 với mọi giá trị của biến x
a,A = x2 - x + 5 ,khi x = 2
= 22 - 2 + 5
= 7.
a: Thay x=2 vào A, ta được:
\(A=2^2-2+5=4+5-2=7\)
Cho 2 biểu thức:
A = x-2/x và B = 4x/x+1+x/1-x+2x/x^2-1
a) Tính giá trị biểu thức A khi x =2/3
b) Chứng minh : B =3x/x+1
c) Cho P=A.B Tìm tất cả các giá trị của m để Pt P=m có nghiệm duy nhất
a: Khi x=2/3 thì \(A=\dfrac{\dfrac{2}{3}-2}{\dfrac{2}{3}}=\dfrac{-4}{3}\cdot\dfrac{3}{2}=-2\)
b: \(B=\dfrac{4x}{x+1}-\dfrac{x}{x-1}+\dfrac{2x}{\left(x-1\right)\left(x+1\right)}\)
\(=\dfrac{4x^2-4x-x^2-x+2x}{\left(x-1\right)\left(x+1\right)}=\dfrac{3x^2-3x}{\left(x-1\right)\left(x+1\right)}=\dfrac{3x}{x+1}\)
Rút gọn và tính giá trị của biểu thức:
A = \(\sqrt{-8a}\) - \(\sqrt{4a^2-4a+1}\) với a =\(\dfrac{-1}{2}\)
1 Cho biểu thức M = a2 + ab + b2 – 3a – 3b + 2001. Với giá trị nào của a và b thì M đạt giá trị nhỏ nhất? Tìm giá trị nhỏ nhất đó.
2 Chứng minh các bất đẳng thức:
a) (a + b)2 ≤ 2(a2 + b2)
b) (a + b + c)2 ≤ 3(a2 + b2 + c2)
c) (a1 + a2 + ….. + an)2 ≤ n(a12 + a22 + ….. + an2).
3 Cho số nguyên dương a. Xét các số có dạng: a + 15 ; a + 30 ; a + 45 ; … ; a + 15n. Chứng minh rằng trong các số đó, tồn tại hai số mà hai chữ số đầu tiên là 96.
2:
a: =>a^2+2ab+b^2-2a^2-2b^2<=0
=>-(a^2-2ab+b^2)<=0
=>(a-b)^2>=0(luôn đúng)
b; =>a^2+b^2+c^2+2ab+2ac+2bc-3a^2-3b^2-3c^2<=0
=>-(2a^2+2b^2+2c^2-2ab-2ac-2bc)<=0
=>(a-b)^2+(b-c)^2+(a-c)^2>=0(luôn đúng)