Những câu hỏi liên quan
H24
Xem chi tiết
ND
Xem chi tiết
TQ
14 tháng 9 2021 lúc 22:01

2AB+3AC=5BC

=> =5a

Bình luận (0)
PB
Xem chi tiết
CT
28 tháng 3 2017 lúc 9:48

Giải bài 5 trang 12 sgk Hình học 10 | Để học tốt Toán 10

Ta có:

Giải bài 5 trang 12 sgk Hình học 10 | Để học tốt Toán 10

(Quy tắc hình bình hành)

(Trong đó D là đỉnh còn lại của hình bình hành ABCD)

Giải bài 5 trang 12 sgk Hình học 10 | Để học tốt Toán 10

+ Tính BD:

Hình bình hành ABCD có AB = BC = a nên ABCD là hình thoi.

⇒ AC ⊥ BD tại O là trung điểm của AC và BD.

Giải bài 5 trang 12 sgk Hình học 10 | Để học tốt Toán 10

Bình luận (0)
QL
Xem chi tiết
HM
25 tháng 9 2023 lúc 21:14

Dựng hình bình hành ABDC.

Áp dụng quy tắc hình bình hành vào ABDC ta có:

\(\overrightarrow {AB}  + \overrightarrow {AC}  = \overrightarrow {AD}  \Rightarrow \left| {\overrightarrow {AB}  + \overrightarrow {AC} } \right| = \left| {\overrightarrow {AD} } \right| = AD\)

Gọi là giao điểm của AD và BC, ta có:

\(AO = \sqrt {A{B^2} - B{O^2}}  = \sqrt {A{B^2} - {{\left( {\frac{1}{2}BC} \right)}^2}}  = \sqrt {{a^2} - {{\left( {\frac{a}{2}} \right)}^2}}  = \frac{{a\sqrt 3 }}{2}\)

\(AD = 2AO = a\sqrt 3  \Rightarrow \left| {\overrightarrow {AB}  + \overrightarrow {AC} } \right| = a\sqrt 3 \)

Vậy độ dài vectơ \(\overrightarrow {AB}  + \overrightarrow {AC} \) là \(a\sqrt 3 \)

Bình luận (0)
H24
Xem chi tiết
NL
11 tháng 9 2021 lúc 16:16

\(\overrightarrow{u}=\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GM}+\overrightarrow{GN}=\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}+\overrightarrow{CM}+\overrightarrow{GB}+\overrightarrow{BN}\)

\(=\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}+\overrightarrow{GB}+\overrightarrow{CM}+\overrightarrow{BN}=\overrightarrow{GB}+2\overrightarrow{BN}\)

G là trọng tâm \(\Rightarrow BG=\dfrac{2}{3}.\dfrac{a\sqrt{3}}{2}=\dfrac{a\sqrt{3}}{3}\)

\(\left|\overrightarrow{u}\right|=\left|\overrightarrow{GB}+2\overrightarrow{BN}\right|\Rightarrow\left|\overrightarrow{u}\right|^2=BG^2+4BN^2+4\overrightarrow{GB}.\overrightarrow{BN}\)

\(=\dfrac{a^2}{3}+4a^2+4.\dfrac{a\sqrt{3}}{3}.a.cos120^0=\dfrac{13-2\sqrt{3}}{3}a^2\)

\(\Rightarrow\left|\overrightarrow{u}\right|=\sqrt{\dfrac{13-2\sqrt{3}}{3}}.a\)

Bình luận (0)
PB
Xem chi tiết
CT
18 tháng 3 2017 lúc 3:08

Dựng điểm D sao cho H  là trung điểm AD.

Ta có;  H là trung điểm của mỗi đường AD ;  BC. Do đó, tứ giác ACDB là hình bình hành.

Bình luận (0)
QL
Xem chi tiết
HM
24 tháng 9 2023 lúc 15:35

Các vectơ có độ dài bằng a và có điểm đầu, điểm cuối là các đỉnh của tam giác ABC là:

\(\overrightarrow {AB} ;\;\overrightarrow {BA} ;\;\overrightarrow {AC} ;\;\overrightarrow {CA} ;\;\overrightarrow {BC} ;\;\overrightarrow {CB} \)

Chú ý khi giải:

Vectơ \(\overrightarrow {AB} \) khác vectơ \(\overrightarrow {BA} \) (khác nhau điểm đầu và điểm cuối).

Bình luận (0)
ND
Xem chi tiết
NT
1 tháng 2 2022 lúc 10:52

Gọi O là trung điểm của AM

BM=BC/2=a/2

\(\Leftrightarrow AM=\dfrac{a\sqrt{3}}{2}\)

\(\Leftrightarrow MO=\dfrac{a\sqrt{3}}{4}\)

Xét ΔOMB vuông tại M có 

\(BO^2=OM^2+BM^2\)

\(=a^2\cdot\dfrac{3}{16}+a^2\cdot\dfrac{1}{4}=a^2\cdot\dfrac{7}{16}\)

\(\Leftrightarrow BO=\dfrac{a\sqrt{7}}{4}\)

Xét ΔBMA có BO là đường trung tuyến

nên \(\overrightarrow{BM}+\overrightarrow{BA}=2\cdot\overrightarrow{BO}\)

\(\Leftrightarrow\left|\overrightarrow{BM}+\overrightarrow{BA}\right|=\dfrac{a\sqrt{7}}{2}\)

Bình luận (0)
QL
Xem chi tiết
KT
24 tháng 9 2023 lúc 15:47

Tham khảo:

\(\overrightarrow {AB}  - \overrightarrow {AC}  = \overrightarrow {CB}  \Rightarrow \left| {\overrightarrow {AB}  - \overrightarrow {AC} } \right| = \left| {\overrightarrow {CB} } \right| = CB = a.\)

Dựng hình bình hành ABDC tâm O như hình vẽ.

Ta có:

\(\overrightarrow {AB}  + \overrightarrow {AC}  = \overrightarrow {AB}  + \overrightarrow {BD}  = \overrightarrow {AD} \)

\( \Rightarrow \left| {\overrightarrow {AB}  + \overrightarrow {AC} } \right| = \left| {\overrightarrow {AD} } \right| = AD\)

Vì tứ giác ABDC là hình bình hành, lại có \(AB = AC = BD = CD = a\) nên ABDC là hình thoi.

\( \Rightarrow AD = 2AO = 2.AB.\sin B = 2a.\frac{{\sqrt 3 }}{2} = a\sqrt 3 .\)

Vậy \(\left| {\overrightarrow {AB}  - \overrightarrow {AC} } \right| = a\) và \(\left| {\overrightarrow {AB}  + \overrightarrow {AC} } \right| = a\sqrt 3 \).

Bình luận (0)