Cho hai số thực dương a, b thỏa mãn 9 a 3 + a b + 1 = 3 b + 2 . Giá trị lớn nhất của biểu thức S = 6a - b là
A. 17 12
B. 82 3
C. 11 3
D. 89 12
1.cho a, b,c là các số thực dương thỏa mãn a^3 /(a^2+b^2) + b^3/(b^2+c^2) + c^3/(c^2+a^2) >= (a+b+c)/2
2.cho a, b,c là các số thực dương thỏa mãn (a^3 +b^3+c^3)/2abc + (a^2+ b^2)/c^2 + (b^2+c^2)/(a^2+bc) + (c^2+a^2)/b^2+ac) >= 9/2
Cho hai số thực dương a, b thỏa mãn \(a+2b\ge3\). Tìm giá trị nhỏ nhất của biểu thức \(P=\dfrac{3a^2+a^2b+\dfrac{9}{2}ab^2+\left(8+a\right)b^3}{ab}\)
1) cho các số thực dương a,b thỏa mãn \(3a+b\le1\). Tìm Min của \(P=\dfrac{1}{a}+\dfrac{1}{\sqrt{ab}}\)
2) Với hai số thực a,b không âm thỏa mãn \(a^2+b^2=4\). Tìm Max \(M=\dfrac{ab}{a+b+2}\)
3) Cho x,y khác 0 thỏa mãn \(\left(x+y\right)xy=x^2+y^2-xy\). Tìm Max \(A=\dfrac{1}{x^3}+\dfrac{1}{y^3}\)
1) Áp dụng bất đẳng thức AM - GM và bất đẳng thức Schwarz:
\(P=\dfrac{1}{a}+\dfrac{1}{\sqrt{ab}}\ge\dfrac{1}{a}+\dfrac{1}{\dfrac{a+b}{2}}\ge\dfrac{4}{a+\dfrac{a+b}{2}}=\dfrac{8}{3a+b}\ge8\).
Đẳng thức xảy ra khi a = b = \(\dfrac{1}{4}\).
2.
\(4=a^2+b^2\ge\dfrac{1}{2}\left(a+b\right)^2\Rightarrow a+b\le2\sqrt{2}\)
Đồng thời \(\left(a+b\right)^2\ge a^2+b^2\Rightarrow a+b\ge2\)
\(M\le\dfrac{\left(a+b\right)^2}{4\left(a+b+2\right)}=\dfrac{x^2}{4\left(x+2\right)}\) (với \(x=a+b\Rightarrow2\le x\le2\sqrt{2}\) )
\(M\le\dfrac{x^2}{4\left(x+2\right)}-\sqrt{2}+1+\sqrt{2}-1\)
\(M\le\dfrac{\left(2\sqrt{2}-x\right)\left(x+4-2\sqrt{2}\right)}{4\left(x+2\right)}+\sqrt{2}-1\le\sqrt{2}-1\)
Dấu "=" xảy ra khi \(x=2\sqrt{2}\) hay \(a=b=\sqrt{2}\)
3. Chia 2 vế giả thiết cho \(x^2y^2\)
\(\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{x^2}+\dfrac{1}{y^2}-\dfrac{1}{xy}\ge\dfrac{1}{4}\left(\dfrac{1}{x}+\dfrac{1}{y}\right)^2\)
\(\Rightarrow0\le\dfrac{1}{x}+\dfrac{1}{y}\le4\)
\(A=\left(\dfrac{1}{x}+\dfrac{1}{y}\right)\left(\dfrac{1}{x^2}+\dfrac{1}{y^2}-\dfrac{1}{xy}\right)=\left(\dfrac{1}{x}+\dfrac{1}{y}\right)^2\le16\)
Dấu "=" xảy ra khi \(x=y=\dfrac{1}{2}\)
Cho 3 số thực dương a,b,c thỏa mãn a+2b+3c ≥ 20.
Tìm GTNN của biểu thức A=a+b+c+3/a+9/2b+4/c
\(A=a+b+c+\dfrac{3}{a}+\dfrac{9}{2b}+\dfrac{4}{c}\\ A=\left(\dfrac{3a}{4}+\dfrac{3}{a}\right)+\left(\dfrac{b}{2}+\dfrac{9}{2b}\right)+\left(\dfrac{c}{4}+\dfrac{4}{c}\right)+\left(\dfrac{a}{4}+\dfrac{b}{2}+\dfrac{3c}{4}\right)\\ A=\left(\dfrac{3a}{4}+\dfrac{3}{a}\right)+\left(\dfrac{b}{2}+\dfrac{9}{2b}\right)+\left(\dfrac{c}{4}+\dfrac{4}{c}\right)+\dfrac{1}{4}\left(a+2b+3c\right)\\ A\ge2\sqrt{\dfrac{3a}{4}\cdot\dfrac{3}{a}}+2\sqrt{\dfrac{b}{2}\cdot\dfrac{9}{2b}}+2\sqrt{\dfrac{c}{4}\cdot\dfrac{4}{c}}+\dfrac{1}{4}\cdot20\\ A\ge3+3+2+5=13\\ A_{min}=13\Leftrightarrow\left\{{}\begin{matrix}a=2\\b=3\\c=4\end{matrix}\right.\)
Cho ba số thực dương a,b,c thỏa mãn abc = 1. Chứng minh rằng
\(\left(a^2+b^2+c^2\right)^3\) ≥ 9(a + b + c)
(a2+b2+c2)3(a2+b2+c2)3 ≥ 9(a + b + c)
Cho hai số thực dương a, b thỏa mãn log a b = 2 . Tính log a b b 3 . a
A. - 10 9
B. 2 3
C. - 2 9
D. 2 15
Đáp án A
Ta có b = a 2 ⇒ P = log a 3 b 6 a 6 b 2 = log a 3 a 12 a 10 = 10 log a - 9 a = - 10 9 .
Cho hai số thực dương a, b thỏa mãn log a b = 2 . Tính log a b ( b 3 . a )
Cho hai số thực dương a và b thỏa mãn a + b ≤ 2.
Chứng minh a2/a2 + b2/b2 + a ≤ 1
Sửa đề : \(\dfrac{a^2}{a^2+b}+\dfrac{b^2}{b^2+a}\le1\\ \) (*)
\(< =>\dfrac{a^2\left(b^2+a\right)+b^2\left(a^2+b\right)}{\left(a^2+b\right)\left(b^2+a\right)}\le1\\ < =>a^2b^2+a^3+b^2a^2+b^3\le\left(a^2+b\right)\left(b^2+a\right)\) ( Nhân cả 2 vế cho `(a^{2}+b)(b^{2}+a)>0` )
\(< =>a^3+b^3+2a^2b^2\le a^2b^2+b^3+a^3+ab\\ < =>a^2b^2\le ab\\ < =>ab\le1\) ( Chia 2 vế cho `ab>0` )
Do a,b >0
Nên áp dụng BDT Cô Si :
\(2\ge a+b\ge2\sqrt{ab}< =>\sqrt{ab}\le1\\ < =>ab\le1\)
Do đó (*) luôn đúng
Vậy ta chứng minh đc bài toán
Dấu "=" xảy ra khi : \(a=b>0,a+b=2< =>a=b=1\)
a Sửa đề : Chứng minh \(\dfrac{a^2}{a^2+b}\)+\(\dfrac{b^2}{b^2+a}\)\(\le\) 1 ( Đề thi vào 10 Hà Nội).
Bất đẳng thức trên tương đương :
\(\dfrac{a^2+b-b}{a^2+b}\)+\(\dfrac{b^2+a-a}{b^2+a}\)\(\le\)1
\(\Leftrightarrow\) 1 - \(\dfrac{b}{a^2+b}\)+ 1 - \(\dfrac{a}{b^2+a}\)\(\le\)1
\(\Leftrightarrow\)1 - \(\dfrac{b}{a^2+b}\) - \(\dfrac{a}{b^2+a}\)\(\le\)0
\(\Leftrightarrow\)- \(\dfrac{b}{a^2+b}\)- \(\dfrac{a}{b^2+a}\)\(\le\)-1
\(\Leftrightarrow\)\(\dfrac{a}{b^2+a}\)+ \(\dfrac{b}{a^2+b}\)\(\ge\)1
Xét VT = \(\dfrac{a^2}{ab^2+a^2}\)+ \(\dfrac{b^2}{a^2b+b^2}\)\(\ge\)\(\dfrac{\left(a+b\right)^2}{ab^2+a^2+a^2b+b^2}\) (Cauchy - Schwarz)
= \(\dfrac{\left(a+b\right)^2}{ab\left(b+a\right)+a^2+b^2}\)
\(\ge\)\(\dfrac{\left(a+b\right)^2}{2ab+a^2+b^2}\)
= \(\dfrac{\left(a+b\right)^2}{\left(a+b\right)^2}\)= 1
Vậy BĐT được chứng minh
Dấu '=' xảy ra \(\Leftrightarrow\)a = b = 1
Cho hai số thực dương a, b thỏa mãn a+b+ab=3
Chứng minh rằng \( {a \over b+3}+{b \over a+3}+{ab \over a+b} ≤ 1\)
Cho 2 số thực dương a, b thỏa mãn \(a^3+b^3\le1\). Tìm GTLN: \(A=a+4b\)
\(a^3+\dfrac{1}{9}+\dfrac{1}{9}\ge3\sqrt[3]{\dfrac{a^3}{81}}=\dfrac{a}{\sqrt[3]{3}}\)
\(b^3+\dfrac{8}{9}+\dfrac{8}{9}\ge3\sqrt[3]{\dfrac{64b^3}{81}}=\dfrac{4b}{\sqrt[3]{3}}\)
Cộng vế:
\(\dfrac{1}{\sqrt[3]{3}}\left(a+4b\right)\le a^3+b^3+2\le3\)
\(\Rightarrow a+4b\le3\sqrt[3]{3}\)
Dấu "=" xảy ra khi \(\left(a;b\right)=\left(\dfrac{1}{\sqrt[3]{9}};\dfrac{2}{\sqrt[3]{9}}\right)\)