\(\int_0^1x\sqrt{1-x}dx\)
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Tính các tích phân sau:
a) \(\int_0^1x^3\sqrt{1-x^2}dx\)
b) \(\int_1^2\dfrac{dx}{x^2-2x+2}\)
c) \(\int_1^2\dfrac{dx}{\sqrt{4-x^2}}\)
d) \(\int_0^1x\sqrt{x^2+1}dx\)
a.
Đặt \(\sqrt{1-x^2}=u\Rightarrow x^2=1-u^2\Rightarrow xdx=-udu\)
\(\left\{{}\begin{matrix}x=0\Rightarrow u=1\\x=1\Rightarrow u=0\end{matrix}\right.\)
\(\Rightarrow I=\int\limits^0_1\left(1-u^2\right).u.\left(-udu\right)=\int\limits^1_0\left(u^2-u^4\right)du=\left(\dfrac{1}{3}u^3-\dfrac{1}{5}u^5\right)|^1_0\)
\(=\dfrac{2}{15}\)
b.
\(\int\limits^2_1\dfrac{dx}{x^2-2x+2}=\int\limits^2_1\dfrac{dx}{\left(x-1\right)^2+1}\)
Đặt \(x-1=tanu\Rightarrow dx=\dfrac{1}{cos^2u}du\)
\(\left\{{}\begin{matrix}x=1\Rightarrow u=0\\x=2\Rightarrow u=\dfrac{\pi}{4}\end{matrix}\right.\)
\(\Rightarrow I=\int\limits^{\dfrac{\pi}{4}}_0\dfrac{1}{tan^2u+1}.\dfrac{1}{cos^2u}du=\int\limits^{\dfrac{\pi}{4}}_0\dfrac{cos^2u}{cos^2u}du=\int\limits^{\dfrac{\pi}{4}}_0du\)
\(=u|^{\dfrac{\pi}{4}}_0=\dfrac{\pi}{4}\)
c.
\(\int\limits^2_1\dfrac{dx}{\sqrt{4-x^2}}\)
Đặt \(x=2sinu\Rightarrow dx=2cosu.du\)
\(\left\{{}\begin{matrix}x=1\Rightarrow u=\dfrac{\pi}{6}\\x=2\Rightarrow u=\dfrac{\pi}{2}\end{matrix}\right.\)
\(I=\int\limits^{\dfrac{\pi}{2}}_{\dfrac{\pi}{6}}\dfrac{2cosu.du}{\sqrt{4-4sin^2u}}=\int\limits^{\dfrac{\pi}{2}}_{\dfrac{\pi}{6}}\dfrac{2cosu.du}{2cosu}=\int\limits^{\dfrac{\pi}{2}}_{\dfrac{\pi}{6}}du\)
\(=u|^{\dfrac{\pi}{2}}_{\dfrac{\pi}{6}}=\dfrac{\pi}{3}\)
1.\(\int_0^{\dfrac{\pi}{4}}\dfrac{\sin2x}{\sqrt{1+\cos^4x}}dx\)
2.\(\int_0^{ln3}\dfrac{e^x}{\sqrt{e^x+1}+1}dx\)
3.\(\int_1^2\dfrac{3x+1}{\sqrt{x^2+3x+9}}dx\)
4.\(\int\limits^{\dfrac{\pi}{3}}_{-\dfrac{\pi}{3}}\sin x\sqrt{3+\cos^6x}dx\)
1/ I=\(\int_{-2}^2\left|x^2-1\right|dx\)
2/ I= \(\int_1^e\sqrt{x}.lnxdx\)
3/ I= \(\int_0^{\dfrac{\pi}{2}}\left(e^{sinx}+cosx\right)cosxdx\)
4/ I= \(\int_0^{\dfrac{pi}{2}}\dfrac{sin2x}{\sqrt{cos^2x+4sin^2x}}dx\)
5/ I= \(\int_0^{\dfrac{\pi}{4}}\sqrt{2}cos\sqrt{x}dx\)
6/ I= \(\int_1^{\sqrt{e}}\dfrac{1}{x\sqrt{1-ln^2x}}dx\)
7/ I= \(\int_{-\dfrac{\pi}{4}}^{\dfrac{\pi}{4}}\dfrac{sin^6x+cos^6x}{6^x+1}dx\)
Nhìn đề dữ dội y hệt cr của tui z :( Để làm từ từ
Lập bảng xét dấu cho \(\left|x^2-1\right|\) trên đoạn \(\left[-2;2\right]\)
x | -2 | -1 | 1 | 2 |
\(x^2-1\) | 0 | 0 |
\(\left(-2;-1\right):+\)
\(\left(-1;1\right):-\)
\(\left(1;2\right):+\)
\(\Rightarrow I=\int\limits^{-1}_{-2}\left|x^2-1\right|dx+\int\limits^1_{-1}\left|x^2-1\right|dx+\int\limits^2_1\left|x^2-1\right|dx\)
\(=\int\limits^{-1}_{-2}\left(x^2-1\right)dx-\int\limits^1_{-1}\left(x^2-1\right)dx+\int\limits^2_1\left(x^2-1\right)dx\)
\(=\left(\dfrac{x^3}{3}-x\right)|^{-1}_{-2}-\left(\dfrac{x^3}{3}-x\right)|^1_{-1}+\left(\dfrac{x^3}{3}-x\right)|^2_1\)
Bạn tự thay cận vô tính nhé :), hiện mình ko cầm theo máy tính
2/ \(I=\int\limits^e_1x^{\dfrac{1}{2}}.lnx.dx\)
\(\left\{{}\begin{matrix}u=lnx\\dv=x^{\dfrac{1}{2}}\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}du=\dfrac{dx}{x}\\v=\dfrac{2}{3}.x^{\dfrac{3}{2}}\end{matrix}\right.\)
\(\Rightarrow I=\dfrac{2}{3}.x^{\dfrac{3}{2}}.lnx|^e_1-\dfrac{2}{3}\int\limits^e_1x^{\dfrac{1}{2}}.dx\)
\(=\dfrac{2}{3}.x^{\dfrac{3}{2}}.lnx|^e_1-\dfrac{2}{3}.\dfrac{2}{3}.x^{\dfrac{3}{2}}|^e_1=...\)
3/ \(I=\int\limits^{\dfrac{\pi}{2}}_0e^{\sin x}.\cos x.dx+\int\limits^{\dfrac{\pi}{2}}_0\cos^2x.dx\)
Xét \(A=\int\limits^{\dfrac{\pi}{2}}_0e^{\sin x}.\cos x.dx\)
\(t=\sin x\Rightarrow dt=\cos x.dx\Rightarrow A=\int\limits^{\dfrac{\pi}{2}}_0e^t.dt=e^{\sin x}|^{\dfrac{\pi}{2}}_0\)
Xét \(B=\int\limits^{\dfrac{\pi}{2}}_0\cos^2x.dx\)
\(=\int\limits^{\dfrac{\pi}{2}}_0\dfrac{1+\cos2x}{2}.dx=\dfrac{1}{2}.\int\limits^{\dfrac{\pi}{2}}_0dx+\dfrac{1}{2}\int\limits^{\dfrac{\pi}{2}}_0\cos2x.dx\)
\(=\dfrac{1}{2}x|^{\dfrac{\pi}{2}}_0+\dfrac{1}{2}.\dfrac{1}{2}\sin2x|^{\dfrac{\pi}{2}}_0\)
I=A+B=...
\(\int_0^{\sqrt{7}}\dfrac{x^3}{\sqrt[3]{x^2+1}}dx\)
\(\int_1^6\dfrac{\sqrt{x+3}+1}{x+2}dx\)
a.
\(\int\limits^{\sqrt{7}}_0\dfrac{x^3}{\sqrt[3]{x^2+1}}dx\)
Đặt \(\sqrt[3]{x^2+1}=u\Rightarrow x^2+1=u^3\Rightarrow x^2=u^3-1\Rightarrow x.dx=\dfrac{3}{2}u^2du\)
\(\left\{{}\begin{matrix}x=0\Rightarrow u=1\\x=\sqrt{7}\Rightarrow u=2\end{matrix}\right.\)
\(\Rightarrow I=\int\limits^2_1\dfrac{\left(u^3-1\right).\dfrac{3}{2}u^2du}{u}=\int\limits^2_1\dfrac{3}{2}\left(u^4-u\right)du=\dfrac{3}{2}\left(\dfrac{1}{5}u^5-\dfrac{1}{2}u^2\right)|^2_1\)
\(=\dfrac{141}{20}\)
b.
Đặt \(\sqrt{x+3}=u\Rightarrow x=u^2-3\Rightarrow dx=2udu\)
\(\left\{{}\begin{matrix}x=1\Rightarrow u=2\\x=6\Rightarrow u=3\end{matrix}\right.\)
\(\Rightarrow I=\int\limits^3_2\dfrac{u+1}{u^2-3+2}.2udu=\int\limits^3_2\dfrac{2udu}{u-1}=\int\limits^3_22\left(1+\dfrac{1}{u-1}\right)du\)
\(=2\left(u+ln\left|u-1\right|\right)|^3_2=2\left(1+ln2\right)\)
1.\(\int_0^1x\left(e^{2x^{ }}-\frac{x^2}{\sqrt{4-x^2}}\right)dx\)
2.Giải pt \(\sin\left(2x+\frac{\pi}{2}\right)+\cos x-\sin x=0\)
I=\(\int_0^1\)\(\frac{dx}{\sqrt{3+2x-x^2}}\)
J=\(\int_0^1\)xln(2x+1)dx
K=\(\int_0^1\)\(ln\left(x^3-3x+2\right)dx\)
I=\(\int_0^3\) \(\dfrac{2x^2+x-1}{\sqrt{x+1}}dx\)
\(t=\sqrt{x+1}>0\Rightarrow x=t^2-1\)
\(\Rightarrow dt=\dfrac{1}{2\sqrt{x+1}}dx=\dfrac{1}{2t}dx\Rightarrow dx=2tdt\)
\(\Rightarrow I=\int\dfrac{2t^4-t^2-1}{t}.2tdt=2\int\left(2t^4-t^2-1\right)dt\)
Đến đây bạn làm bình thường r thay t bằng căn(x+1) vô là được
cho f(x) dương liên tục trên [0;1] f(0)=1. Biết \(3\int_0^1\left[f'\left(x\right)\left[f\left(x\right)\right]^2+\frac{1}{9}\right]dx\le2\int_0^1\sqrt{f'\left(x\right)}f\left(x\right)dx\) . Tính \(\int_0^1\left[f\left(x\right)\right]^3dx\)
\(3\int\limits^1_0\left[f'\left(x\right).f^2\left(x\right)+\frac{1}{9}\right]dx\le2\int\limits^1_0\sqrt{f'\left(x\right)}f\left(x\right)dx\) (1)
Ta lại có:
\(3f'\left(x\right).f^2\left(x\right)+\frac{1}{3}\ge2\sqrt{f'\left(x\right)}.f\left(x\right)\)
\(\Rightarrow3\int\limits^1_0\left[f'\left(x\right).f^2\left(x\right)+\frac{1}{9}\right]\ge2\int\limits^1_0\sqrt{f'\left(x\right)}.f\left(x\right)dx\) (2)
Từ (1); (2) \(\Rightarrow3\int\limits^1_0\left[f'\left(x\right).f^2\left(x\right)+\frac{1}{9}\right]dx=2\int\limits^1_0\sqrt{f'\left(x\right)}.f\left(x\right)dx\)
Dấu "=" xảy ra khi và chỉ khi:
\(3f'\left(x\right).f^2\left(x\right)=\frac{1}{3}\Rightarrow3\int f'\left(x\right).f^2\left(x\right)dx=\int\frac{1}{3}dx\)
\(\Rightarrow f^3\left(x\right)=\frac{x}{3}+C\)
Thay \(x=0\Rightarrow f^3\left(0\right)=C\Rightarrow C=1\)
\(\Rightarrow f^3\left(x\right)=\frac{x}{3}+1\Rightarrow\int\limits^1_0f^3\left(x\right)dx=\int\limits^1_0\left(\frac{x}{3}+1\right)dx=\frac{7}{6}\)