Cho tam giác ABC vuông tại A, đường cao AH, biết AB = 6 cm AC = 8 cm .Tính BC, AH, CH, BH
Cho tam giác ABC vuông tại A, đường cao AH.
a) Biết AH = 6 cm; BH = 4,5 cm. Tính AB, AC, BC, HC.
b) Biết AB = 6 cm, BH = 3 cm. Tính AH, AC, CH
a,
pytago trong tam giác ABH
\(=>AB=\sqrt{AH^2+BH^2}=\sqrt{6^2+4,5^2}=7,5cm\)
dễ dàng chứng minh \(\Delta AHB\sim\Delta CAB\left(g.g\right)=>\dfrac{AH}{AC}=\dfrac{HB}{AB}=>AC=10cm\)
pytago cho tam giác ABC
\(=>BC=\sqrt{AB^2+AC^2}=12,5cm\)
\(=>HC=BC-HB=8cm\)
b, pytago cho tam giác AHB
\(=>AH=\sqrt{AB^2-BH^2}=3\sqrt{3}cm\)
rồi tính AC , CH làm tương tự bài trên
Cho tam giác ABC vuông tại A, đường cao AH .
a) Biết AH = 12cm ,CH = 5cm.Tính AC , AB , BC , BH
b) Biết AB = 30 cm, AH = 24 cm. Tính AC ,CH ,BC ,BH
c) Biết AC = 20 cm , CH = 16 cm. Tính AB ,AH,BC,BH
d) Biết AB = 6 cm , BC = 10 cm . Tính AC, AH, BH, CH
e) Biết BH =9 cm, CH = 16 cm . Tính AC , AB, BC, AH
Giúp mìn với ạ, cảm ơn nhìu
d) \(AC=\sqrt{BC^2-AB^2}=8\)
\(AH=\dfrac{AB.AC}{BC}=4,8\)
\(BH=\sqrt{AB^2-AH^2}=3,6\)
\(CH=BC-BH=6,4\)
Cho tam giác ABC vuông tại A, đường cao AH .
a) Biết AH = 12cm ,CH = 5cm.Tính AC , AB , BC , BH
b) Biết AB = 30 cm, AH = 24 cm. Tính AC ,CH ,BC ,BH
c) Biết AC = 20 cm , CH = 16 cm. Tính AB ,AH,BC,BH
d) Biết AB = 6 cm , BC = 10 cm . Tính AC, AH, BH, CH
e) Biết BH =9 cm, CH = 16 cm . Tính AC , AB, BC, AH
1. Cho tam giác ABC vuông tại A, đường cao AH. Biết AB = 6 cm. AC = 8 cm. Tính BC; AH; BH.
#)Giải :
Áp dụng định lí Py - ta - go ta có :
\(BC^2=AB^2+AC^2=6^2+8^2=36+64=100\)
\(\Rightarrow BC=\sqrt{100}=10\)
Áp dụng hệ thức lượng vào tam giác vuông ABC, ta có :
\(\frac{1}{AH^2}=\frac{1}{AB^2}=\frac{1}{AC^2}=\frac{1}{6^2}+\frac{1}{8^2}=\frac{25}{576}\)
\(\Rightarrow AH^2=\frac{576}{25}\Rightarrow AH=\frac{24}{5}=4,8\left(cm\right)\)
\(\Rightarrow BC^2=\sqrt{AB^2+AC^2}=\sqrt{6^2+8^2}=10\left(cm\right)\)
\(\Rightarrow AB^2=BH.BC\Rightarrow6^2=BH.10\Rightarrow BH=3,6\left(cm\right)\)
Vậy BC = 10cm ; AH = 4,8cm ; BH = 3,6cm
Giải: Áp dụng định lí Pi - ta- go vào t/giác ABC vuông tại A, ta có:
BC2 = AB2 + AC2
=> BC2 = 62 + 82 = 36 + 64 = 100
=> BC = 10
Ta có: Sabc = AB.AC/2
Sabc = AH.BC/2
=> AB.AC/2 = AH.BC/2
=> AB.AC = AH.BC
=> 6.8 = AH.10
=> 48 = AH.10
=> AH = 48 : 10 = 4,8
Xét t/giác ABH có : AB2 = AH2 + BH2 (theo định lí Pi - ta - go)
=> BH2 = AB2 - AH2 = 62 - (4,8)2 = 36 - 23,04 = 12,96
=> BH = 3,6
Vậy ...
Cho tam giác ABC vuông tại A , đường cao AH a, Biết AH = 6 cm , BH = 4,5 cm . Tính AB , AC , BC, HC b, Biết AB=6 cm , BH = 3cm . Tính AH , AC ,HC
Cho tam giác ABC vuông tại A, AH là đường cao. Tính lần lượt độ dài các đoạn thẳng BH,CH,AH,AC nếu biết:
1)AB=6 cm; BC=8 cm
Áp dụng định lí Pytago vào ΔACB vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow AC^2=64-36=28\)
hay \(AC=2\sqrt{7}\left(cm\right)\)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}BH=\dfrac{6^2}{8}=\dfrac{36}{8}=4.5\left(cm\right)\\CH=\dfrac{28}{8}=3.5\left(cm\right)\end{matrix}\right.\)
Áp dụng định lí Pytago vào ΔABH vuông tại H, ta được:
\(AB^2=AH^2+HB^2\)
\(\Leftrightarrow AH^2=AB^2-BH^2=6^2-4.5^2=15.75\left(cm\right)\)
hay \(AH=\dfrac{3\sqrt{7}}{2}\left(cm\right)\)
Bài 1: Cho tam giác ABC vuông tại A và có đường cao AH. Cho biết AH=24 cm và HC=18 cm. Tính: BH, ,BC,AC,AB và diện tích tam giác ABC Bài 2: Cho tam giác ABC vuông tại A và có đường cao AH. Cho biết AB= 12 cm và BC=20 cm. Tính: BH, ,AC,HC,AH và diện tích tam giác ABC Bài 3: Cho tam giác ABC vuông tại A và có đường cao AH. Cho biết AB=3 cm và AC=4 cm. Tính: BH, ,BC,HC,AH và diện tích tam giác ABC Bài 4: Cho tam giác ABC vuông tại A và có đường cao AH. Cho biết AC=15 cm và AH =12 cm. Tính: BH, ,BC,AB,AH và diện tích tam giác ABC Bài 5:Cho tam giác ABC vuông tại A và có đường cao AH. Cho biết AB=20 cm và HC=9cm. Tính: BH, ,BC,AC,AH và diện tích tam giác ABC
Bài 5:
Ta có: \(AB^2=BH\cdot BC\)
\(\Leftrightarrow BH\left(BH+9\right)=400\)
\(\Leftrightarrow BH^2+25HB-16HB-400=0\)
\(\Leftrightarrow BH=16\left(cm\right)\)
hay BC=25(cm)
Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC
nên \(\left\{{}\begin{matrix}AC^2=CH\cdot BC\\AH\cdot BC=AB\cdot AC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AC=15\left(cm\right)\\AH=12\left(cm\right)\end{matrix}\right.\)
cho tam giác vuông ABC vuông tại A sao cho đường cao AH biết AB= 3 cm , AC = 4 cm , tính BC AH BH CH
Áp dụng định lý Pytago vào tam giác ABC(góc A=90) có:
BC2=AB2+AC2
<=>BC2=32+42
<=>BC2=25
<=>BC=5(cm)
Áp dụng HTL vào tam giác ABC vuông tại A có đường cao AH được:
AB.AC=BC.AH
<=>3.4=5.AH
<=> AH=\(\dfrac{3.4}{5}\)
<=>AH=2,4(cm)
Áp dụng định lý Pytago vào tam giác AHB vuông tại H có:
AB2=AH2+BH2
<=>BH2=32-2,42
<=>BH2=3,24
<=>BH=1,8(cm)
Ta có:BC=BH+CH
=>CH=BC-BH=5-1,8=3,2(cm)
Vậy BC=5cm;AH=2,4cm;BH=1,8cm;CH=3,2cm
ABC vuông tại A Vẽ đường cao AH AB = (6 cm )AC = (8 cm) a) cho tam giác HBA đồng dạng tam giác ABC B) tính bc, ah, bh
a) Xét ΔHBA vuông tại H và ΔABC vuông tại A có
\(\widehat{B}\) chung
Do đó: ΔHBA\(\sim\)ΔABC(g-g)