Bài 1: Một số hệ thức về cạnh và đường cao trong tam giác vuông

LN

Cho tam giác ABC vuông tại A, AH là đường cao. Tính lần lượt độ dài các đoạn thẳng BH,CH,AH,AC nếu biết:

1)AB=6 cm; BC=8 cm

 

NT
6 tháng 8 2021 lúc 21:13

Áp dụng định lí Pytago vào ΔACB vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow AC^2=64-36=28\)

hay \(AC=2\sqrt{7}\left(cm\right)\)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}BH=\dfrac{6^2}{8}=\dfrac{36}{8}=4.5\left(cm\right)\\CH=\dfrac{28}{8}=3.5\left(cm\right)\end{matrix}\right.\)

Áp dụng định lí Pytago vào ΔABH vuông tại H, ta được:

\(AB^2=AH^2+HB^2\)

\(\Leftrightarrow AH^2=AB^2-BH^2=6^2-4.5^2=15.75\left(cm\right)\)

hay \(AH=\dfrac{3\sqrt{7}}{2}\left(cm\right)\)

Bình luận (0)

Các câu hỏi tương tự
TT
Xem chi tiết
VT
Xem chi tiết
H24
Xem chi tiết
BN
Xem chi tiết
TL
Xem chi tiết
TH
Xem chi tiết
NT
Xem chi tiết
NL
Xem chi tiết
H24
Xem chi tiết