Có bao nhiêu giá trị nguyên của tham số m để tồn tại cặp số (x;y) thỏa mãn e 2 x + y + 1 - e 3 x + 2 y = x + y + 1 đồng thời thỏa mãn log 2 2 2 x + y - 1 - m + 4 log 2 x + m 2 + 4 = 0 .
A. 3
B. 4
C. 5
D. 6
Có bao nhiêu giá trị nguyên dương của tham số m để tồn tại các số thực x, y thỏa mãn đồng thời e 3 x + 5 y - 10 - e x + 3 y - 9 = 1 - 2 x - 2 y và log 2 5 3 x + 2 y + 4 - m + 6 log 5 x + 5 + m 2 + 9 = 0
A. 3
B. 5
C. 4
D. 6
Có bao nhiêu giá trị nguyên của tham số m để hàm số: đạt cực tiểu tại x=0?
A. Vô số
B. 3
C. 2
D. 4
3. Có bao nhiêu giá trị nguyên của tham số m để hàm số \(y=\dfrac{x+1}{x+3m}\) nghịch biến trên khoảng(6;+\(\infty\) )?
4. Có bao nhiêu giá trị nguyên của tham số m để hàm số \(y=\dfrac{x+2}{x+3m}\) đồng biến trên khoảng (-\(\infty\);-6)?
3.
\(y'=\dfrac{3m-1}{\left(x+3m\right)^2}\)
Hàm nghịch biến trên khoảng đã cho khi:
\(\left\{{}\begin{matrix}3m-1< 0\\-3m\le6\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m< \dfrac{1}{3}\\m\ge-2\end{matrix}\right.\)
\(\Rightarrow-2\le m< \dfrac{1}{3}\Rightarrow m=\left\{-2;-1;0\right\}\)
4.
\(y'=\dfrac{3m-2}{\left(x+3m\right)^2}\)
Hàm đồng biến trên khoảng đã cho khi:
\(\left\{{}\begin{matrix}3m-2>0\\-3m\ge-6\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m>\dfrac{2}{3}\\m\le2\end{matrix}\right.\)
\(\Rightarrow\dfrac{2}{3}< m\le2\Rightarrow m=\left\{1;2\right\}\)
Có bao nhiêu giá trị nguyên của tham số m để hàm số y = x 9 + ( m - 2 ) x 7 - m 2 - 4 x 6 + 7 đạt cực tiểu tại x=0?
A. 3.
B. 4.
C. Vô số.
D. 5.
Đáp án B
Dễ thấy x=0 là một nghiệm của đạo hàm y'. Do đó hàm số đạt cực tiểu tại x=0 khi và chỉ khi y'đổi dấu từ âm sang dương khi đi qua nghiệm x=0.Ta thấy dấu của y' là dấu của hàm số g ( x ) = x 2 - 4 2 m - 1 x - m . Hàm số g(x) đổi dấu khi đi qua giá trị x=0 khi x=0 là nghiệm của g(x). Khi đó g(0) = 0 ⇔ m=0
Thử lại, với m=0 thì g ( x ) = x 2 + 4 x đổi dấu từ âm sang dương khi đi qua giá trị x=0
Vậy có 1 giá trị m thỏa mãn yêu cầu bài toán
Cho hàm số y = f(x) có đồ thị như hình bên. Tồn tại bao nhiêu giá trị nguyên của hàm số m để phương trình f sin x = m có đúng hai nghiệm trên đoạn 0 ; π ?
A. 4
B. 7
C. 5
D. 6
Có bao nhiêu giá trị nguyên của tham số m để hàm số y = x 8 + ( m - 2 ) x 5 - ( m 2 - 4 ) x 4 + 1 đạt cực tiểu tại x=0
A. 3
B. 5
C. 4
D. Vô số
Có bao nhiêu giá trị nguyên của tham số m để hàm số: y = x 8 + ( m + 1 ) x 5 - ( m 2 - 1 ) x 4 + 1 đạt cực tiểu tại x=0 ?
A. Vô số
B. 3
C. 2
D. 4
Có bao nhiêu giá trị nguyên của tham số m để đường thẳng y=m(x-4) cắt đồ thị của hàm số y = x 2 − 1 x 2 − 9 tại bốn điểm phân biệt?
A. 1
B. 5
C. 3
D. 7
Có bao nhiêu giá trị nguyên của tham số m để đồ thị của hàm số y = x 3 + ( m + 2 ) x 2 + ( m 2 - m - 3 ) x - m 2 cắt trục hoành tại ba điểm phân biệt
A. 3
B. 2
C. 4
D. 1
Chọn đáp án A
Phương pháp
Nhẩm nghiệm của phương trình hoành độ giao điểm, từ đó tìm điều kiện để phương trình hoành độ giao điểm có 3 nghiệm phân biệt.
Để đồ thị hàm số cắt trục hoành tại ba điểm phân biệt thì phương trình x 2 + ( m + 3 ) x + m 2 = 0 phải có hai nghiệm phân biệt khác 1
Do đó với -1<m<3 thì đồ thị hàm số cắt trục hoành tại 3 điểm phân biệt