Những câu hỏi liên quan
H24
Xem chi tiết
NT
17 tháng 9 2023 lúc 21:31

\(u_n=\dfrac{n+2}{n}\)

\(u_{n+1}=\dfrac{n+3}{n+1}\)

\(\Rightarrow u_{n+1}-u_n=\dfrac{n+3}{n+1}-\dfrac{n+2}{n}\)

\(\Rightarrow u_{n+1}-u_n=\dfrac{n\left(n+3\right)-\left(n+1\right)\left(n+2\right)}{n\left(n+1\right)}\)

\(\Rightarrow u_{n+1}-u_n=\dfrac{n^2+3n-\left(n^2+3n+2\right)}{n\left(n+1\right)}\)

\(\Rightarrow u_{n+1}-u_n=\dfrac{n^2+3n-n^2-3n-2}{n\left(n+1\right)}\)

\(\Rightarrow u_{n+1}-u_n=\dfrac{-2}{n\left(n+1\right)}< 0\)

Vậy dãy số \(u_n\) đã cho là dãy giảm

Bình luận (0)
PB
Xem chi tiết
CT
21 tháng 6 2019 lúc 4:28

Đáp án C

Bình luận (0)
PB
Xem chi tiết
CT
17 tháng 7 2017 lúc 13:07

Chọn A.

Trước hết ta chứng minh 1 < un < 4

Điều này hiển nhiên đúng với n = 1.

Giả sử 1 < un < 4, ta có: 

Ta chứng minh (un) là dãy tăng

Ta có u1 < u2, giả sử un-1 < un, n ≤ k.

Khi đó: 

Vậy dãy (un)  là dãy tăng và bị chặn.

Bình luận (0)
MM
Xem chi tiết
AH
19 tháng 12 2021 lúc 20:10

Lời giải:

Với $n$ lẻ bất kỳ:
$u_n<0; u_{n+1>0; u_{n+2}< 0$

$\Rightarrow u_n< u_{n+1}> u_{n+2}$ với mọi $n$ lẻ bất kỳ

Do đó dãy không tăng cũng không giảm.

Bình luận (0)
H24
Xem chi tiết
DL
8 tháng 2 2022 lúc 22:28

undefined

Bình luận (0)
H24
Xem chi tiết
NT
30 tháng 8 2023 lúc 21:21

a: \(u_{n+1}-u_n\)

\(=2-3\left(n+1\right)-2+3n\)

=-3n-3+3n

=-3<0

=>Đây là dãy giảm

b: \(u_{n+1}-u_n\)

\(=\dfrac{n+2}{n+1}-\dfrac{n+1}{n}\)

\(=\dfrac{n^2+2n-n^2-2n-1}{n\left(n+1\right)}=\dfrac{-1}{n\left(n+1\right)}< 0\)

=>Đây là dãy giảm

c: \(u_{n+1}-u_n==\dfrac{1}{n+2}-\dfrac{1}{n+1}\)

\(=\dfrac{n+1-n-2}{\left(n+1\right)\left(n+2\right)}=\dfrac{-1}{\left(n+1\right)\left(n+2\right)}< 0\)

=>Đây là dãy giảm

d: \(\dfrac{u_{n+1}}{u_n}=\dfrac{2^{n+1}}{2^n}=2>1\)

=>Đây là dãy tăng

Bình luận (0)
PB
Xem chi tiết
CT
9 tháng 2 2018 lúc 3:06

Giải bài 7 trang 107 sgk Đại số 11 | Để học tốt Toán 11

+ Xét tính tăng giảm.

Với mọi n ∈ N ta có:

Giải bài 7 trang 107 sgk Đại số 11 | Để học tốt Toán 11

⇒ un + 1 < un với mọi n ∈ N.

⇒ (un) là dãy số giảm.

+ Xét tính bị chặn.

un > 0 với mọi n.

⇒ (un) bị chặn dưới.

un ≤ u1 = √2 - 1 với mọi n

⇒ (un) bị chặn trên.

⇒ (un) bị chặn.

Bình luận (0)
BB
Xem chi tiết
RH
16 tháng 12 2023 lúc 22:06

Ta sẽ chứng minh \(\left(u_n\right)\) giảm, tức \(u_{n+1}< u_n\) (*) bằng phương pháp quy nạp.

Với n = 1: \(u_2-u_1=\dfrac{u_1^2+1}{4}-u_1=\dfrac{2^2+1}{4}-2=\dfrac{-3}{4}< 0\)

Giả sử (*) đúng với n = k (\(k\in N;k>1\)), tức \(u_{k+1}< u_k\)

Ta sẽ chứng minh (*) đúng với n = k + 1, tức \(u_{k+2}< u_{k+1}\)

\(u_{k+2}=\dfrac{\left(u_{k+1}\right)^2+1}{4}< \dfrac{u_k^2+1}{4}=u_{k+1}\)

Theo nguyên lí quy nạp, ta được đpcm.

Vậy \(\left(u_n\right)\) giảm.

Bình luận (0)
NN
Xem chi tiết
NT
10 tháng 9 2023 lúc 16:17

\(u_n=\dfrac{3^n-1}{2^n}\)

\(\Rightarrow u_{n+1}=\dfrac{3^{n+1}-1}{2^{n+1}}\)

\(\Rightarrow u_{n+1}-u_n=\dfrac{3^{n+1}-1}{2^{n+1}}-\dfrac{3^n-1}{2^n}\)

\(\Rightarrow u_{n+1}-u_n=\dfrac{2^n.3^{n+1}-2^n-2^{n+1}.3^n+2^{n+1}}{2^n.2^{n+1}}\)

\(=\dfrac{2^n.3^n\left(3-2\right)-2^n\left(2-1\right)}{2^{2n+1}}\)

\(=\dfrac{2^n.\left(3^n-1\right)}{2^{2n+1}}\)

\(=\dfrac{\left(3^n-1\right)}{2}>0\left(n>1\right)\)

Vậy dãy \(u_n\)đã cho tăng

Bình luận (0)