Những câu hỏi liên quan
DV
Xem chi tiết
KT
4 tháng 1 2018 lúc 19:23

\(D=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{10^2}\)

Ta thấy:   \(\frac{1}{2^2}< \frac{1}{1.2}=1-\frac{1}{2}\)

              \(\frac{1}{3^2}< \frac{1}{2.3}=\frac{1}{2}-\frac{1}{3}\)

             \(\frac{1}{4^2}< \frac{1}{3.4}=\frac{1}{3}-\frac{1}{4}\)

                 \(.......\)

             \(\frac{1}{10^2}< \frac{1}{9.10}=\frac{1}{9}-\frac{1}{10}\)

Cộng theo vế ta được:

\(D< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{9}-\frac{1}{10}\)\(=1-\frac{1}{10}\)\(< 1\)   (đpcm)

Bình luận (0)
QL
Xem chi tiết
MS
20 tháng 6 2017 lúc 7:40

\(D=\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+.......+\dfrac{1}{10^2}\)

\(D< \dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+.......+\dfrac{1}{9.10}\)

\(D< 1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+.....+\dfrac{1}{9}-\dfrac{1}{10}\)

\(D< 1-\dfrac{1}{10}\Leftrightarrow D< 1\left(đpcm\right)\)

Bình luận (0)
TH
Xem chi tiết
TH
Xem chi tiết
HN
23 tháng 10 2015 lúc 10:50

TA CÓ:

A=30+3+32+33+........+311

(30+3+32+33)+....+(38+39+310+311)

3(0+1+3+32)+......+38(0+1+3+32

3.13+....+38.13 cHIA HẾT CHO 13 NÊN A CHIA HẾT CHO 13( đpcm)

 

Bình luận (0)
CT
4 tháng 8 2021 lúc 8:54
Fikj Hrtui
Bình luận (0)
 Khách vãng lai đã xóa
DA
Xem chi tiết
KL
22 tháng 10 2023 lúc 12:13

a) P = 1 + 3 + 3² + ... + 3¹⁰¹

= (1 + 3 + 3²) + (3³ + 3⁴ + 3⁵) + ... + (3⁹⁹ + 3¹⁰⁰ + 3¹⁰¹)

= 13 + 3³.(1 + 3 + 3²) + ... + 3⁹⁹.(1 + 3 + 3²)

= 13 + 3³.13 + ... + 3⁹⁹.13

= 13.(1 + 3³ + ... + 3⁹⁹) ⋮ 13

Vậy P ⋮ 13

b) B = 1 + 2² + 2⁴ + ... + 2²⁰²⁰

= (1 + 2² + 2⁴) + (2⁶ + 2⁸ + 2¹⁰) + ... + (2²⁰¹⁶ + 2²⁰¹⁸ + 2²⁰²⁰)

= 21 + 2⁶.(1 + 2² + 2⁴) + ... + 2²⁰¹⁶.(1 + 2² + 2⁴)

= 21 + 2⁶.21 + ... + 2²⁰¹⁶.21

= 21.(1 + 2⁶ + ... + 2²⁰¹⁶) ⋮ 21

Vậy B ⋮ 21

c) A = 2 + 2² + 2³ + ... + 2²⁰

= (2 + 2² + 2³ + 2⁴) + (2⁵ + 2⁶ + 2⁷ + 2⁸) + ... + (2¹⁷ + 2¹⁸ + 2¹⁹ + 2²⁰)

= 30 + 2⁴.(2 + 2² + 2³ + 2⁴) + ... + 2¹⁶.(2 + 2² + 2³ + 2⁴)

= 30 + 2⁴.30 + ... + 2¹⁶.30

= 30.(1 + 2⁴ + ... + 2¹⁶)

= 5.6.(1 + 2⁴ + ... + 2¹⁶) ⋮ 5

Vậy A ⋮ 5

d) A = 1 + 4 + 4² + ... + 4⁹⁸

= (1 + 4 + 4²) + (4³ + 4⁴ + 4⁵) + ... + (4⁹⁷ + 4⁹⁸ + 4⁹⁹)

= 21 + 4³.(1 + 4 + 4²) + ... + 4⁹⁷.(1 + 4 + 4²)

= 21 + 4³.21 + ... + 4⁹⁷.21

= 21.(1 + 4³ + ... + 4⁹⁷) ⋮ 21

Vậy A ⋮ 21

e) A = 11⁹ + 11⁸ + 11⁷ + ... + 11 + 1

= (11⁹ + 11⁸ + 11⁷ + 11⁶ + 11⁵) + (11⁴ + 11³ + 11² + 11 + 1)

= 11⁵.(11⁴ + 11³ + 11² + 11 + 1) + 16105

= 11⁵.16105 + 16105

= 16105.(11⁵ + 1)

= 5.3221.(11⁵ + 1) ⋮ 5

Vậy A ⋮ 5

Bình luận (0)
NG
Xem chi tiết
HT
18 tháng 3 2018 lúc 22:24

Vì  giá trị  của D bé hơn 1

Bình luận (0)
NU
18 tháng 3 2018 lúc 22:30

\(D=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{10^2}\)

\(2D=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{9^2}\)

\(2D-D=\frac{1}{2}-\frac{1}{10^2}\)

\(D=\frac{10^2\cdot2}{10^2}-\frac{1}{10^2}=\frac{10^2\cdot2-1}{10^2}>1\)

Bình luận (0)
H24
18 tháng 3 2018 lúc 22:36

sai hết vs nhau !!!!

\(D=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{10^2}\)

vì \(\frac{1}{2^2}< \frac{1}{1\cdot2};\frac{1}{3^2}< \frac{1}{2\cdot3};\frac{1}{4^2}< \frac{1}{3\cdot4};...;\frac{1}{10^2}< \frac{1}{9\cdot10}\)

nên \(D< \frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{9\cdot10}\)

\(\Rightarrow D< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{9}-\frac{1}{10}\)

\(\Rightarrow D< 1-\frac{1}{10}\)

\(\Rightarrow D< \frac{9}{10}< 1\)

\(\Rightarrow D< 1\left(đpct\right)\)

Bình luận (0)
H24
Xem chi tiết
LT
15 tháng 3 2017 lúc 11:53

\(\frac{1}{2^2}nha\)đề sai đó

\(tacó\)\(D< \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{8.9}+\frac{1}{9.10}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{9}-\frac{1}{10}\)
\(=1-\frac{1}{10}\)\(< 1\)

do dó D<1

Bình luận (0)
H24
15 tháng 3 2017 lúc 12:40

thank kiu

Bình luận (0)
DH
Xem chi tiết
H24
17 tháng 12 2017 lúc 19:57

a) S = 2 + 22 + 23 + 24 +.....+ 29 + 210

   = (2 + 22) + (23 + 24) +.....+ (29 + 210)

   = 2(1 + 2) + 23(1 + 2) +....+ 29(1 + 2)

   = 3.(2 + 23 +.... + 29) chia hết cho 3

   => S = 2 + 22 + 23 + 24 +.....+ 29 + 210 chia hết cho 3 (Đpcm)

b) 1+32+33+34+...+399

=(1+3+32+33)+....+(396+397+398+399)

=40+.........+396.40

=40.(1+....+396) chia hết cho 40 (đpcm)

Bình luận (0)
DH
17 tháng 12 2017 lúc 19:57

ai trả lời giúp mình mình k cho

Bình luận (0)
KT
17 tháng 12 2017 lúc 19:59

BÀI 1:

S = 2 + 22 + 23 + 24 + ..... + 210

= (2 + 22) + ( 23 + 24) + ..... + (27 + 28) + (29 + 210)

= 2(1 + 2) + 23(1 + 2) + ..... + 27(1 + 2) + 29(1 + 2)

= 3(2 + 23 + .... + 27 + 29)    \(⋮3\)

BÀI 2:

1 + 3 + 32 + 33 + ....... + 399

= (1 + 3 + 32 + 33) + ..... + (396 + 397 + 398 + 399)

= (1 + 3 + 32 + 33) + ..... + 396(1 + 3 + 32 + 33)

= 40(1 + 34 + ..... + 396)     \(⋮40\)

Bình luận (0)
TN
Xem chi tiết
NT
21 tháng 8 2023 lúc 20:35

2:

a: A=1+2+2^2+2^3+2^4

=>2A=2+2^2+2^3+2^4+2^5

=>A=2^5-1

=>A=B

b: C=3+3^2+...+3^100

=>3C=3^2+3^3+...+3^101

=>2C=3^101-3

=>\(C=\dfrac{3^{101}-3}{2}\)

=>C=D

Bình luận (0)
H24
21 tháng 8 2023 lúc 20:43

Ta có: 

\(\left\{\begin{matrix}5^{27}=\left(5^3\right)^9=125^9\\2^{63}=\left(2^7\right)^9=128^9\end{matrix}\right\}\Rightarrow5^{27}< 2^{63}\left(1\right)\)

\(\left\{\begin{matrix}2^{63}=\left(2^9\right)^7=512^7\\5^{28}=\left(5^4\right)^7=625^7\end{matrix}\right\}\Rightarrow2^{63}< 5^{28}\left(2\right)\)

Từ (1) và (2) \(\Rightarrow5^{27}< 2^{63}< 5^{28}\) (đpcm)

Bình luận (0)
BD
21 tháng 8 2023 lúc 20:52

 \(a.5^{27}=\left(5^3\right)^9=125^9\\ 2^{63}=\left(2^7\right)^9=128^9\)

Vì 1289 > 125=> 263 > 527

\(5^{28}=\left(5^4\right)^7=625^7\\ 2^{63}=\left(2^9\right)^7=512^7\)

Vì 6257 > 5127 = > 528 > 263

Đã CMR: \(5^{27}< 2^{63}< 5^{28}\)

\(b.A=1+2+2^2+2^3+2^4\\ 2A=2+2^2+2^3+2^4+2^5\\ 2A-A=\left(2+2^2+2^3+2^4+2^5\right)-\left(1+2+2^2+2^3+2^4+\right)\\ A=2^5-1\\ 2^5-1=2^5-1=>A=B\\ c,C=3+3^2+....+3^{100}\\ 3C=3^2+......+3^{101}\\ 3C-C=\left(3^2+...+3^{101}\right)-\left(3+...+3^{100}\right)\\ 2C=3^{101}-3\\ C=\dfrac{3^{101}-3}{2}\\ \dfrac{3^{101}-3}{2}=\dfrac{3^{101}-3}{2}=>C=D\)

Bình luận (0)
ML
Xem chi tiết
NT
18 tháng 6 2023 lúc 22:41

a: 6x^2-7x-3=0

=>6x^2-9x+2x-3=0

=>(2x-3)(3x+1)=0

=>x=-1/3 hoặc x=3/2

=>ĐPCM

b: 2x^2-5x-3=0

=>2x^2-6x+x-3=0

=>(x-3)(2x+1)=0

=>x=-1/2 hoặc x=3

=>ĐPCM

Bình luận (0)