Những câu hỏi liên quan
PB
Xem chi tiết
CT
22 tháng 11 2017 lúc 2:16

Phân thức  3 x + 2 2 x - 1 - 3 2 x + 1  xác định khi:

2(x – 1) – 3(2x + 1) ≠ 0

Ta giải phương trình: 2(x – 1) – 3(2x + 1) = 0

Ta có: 2(x – 1) – 3(2x + 1) = 0 ⇔ 2x – 2 – 6x – 3 = 0

⇔ -4x – 5 = 0 ⇔ 4x = -5 ⇔ x = -5/4

Vậy khi x  ≠  -5/4 thì phân thức A xác định.

Bình luận (0)
PB
Xem chi tiết
CT
7 tháng 12 2018 lúc 7:20

Phân thức  0 , 5 x + 3 - 2 1 , 2 x + 0 , 7 - 4 0 , 6 x + 0 , 9 )  xác định khi:

1,2(x + 0,7) – 4(0,6x + 0,9) ≠ 0

Ta giải phương trình: 1,2(x + 0,7) – 4(0,6x + 0,9) = 0

Ta có: 1,2(x + 0,7) – 4(0,6x + 0,9) = 0

⇔ 1,2x + 0,84 – 2,4x – 3,6 = 0

⇔ -1,2x – 2,76 = 0 ⇔ x = -2,3

Vậy khi x  ≠ -2,3 thì phân thức B xác định.

Bình luận (0)
TQ
Xem chi tiết
H9
2 tháng 10 2023 lúc 6:40

Ta có: \(C=\dfrac{2x+1}{x^2+x-2}=\dfrac{2x+1}{\left(x-1\right)\left(x+2\right)}\)

ĐKXĐ: \(\left\{{}\begin{matrix}x\ne1\\x\ne-2\end{matrix}\right.\) 

\(\left|2x+5\right|=7\)

\(\Leftrightarrow\left[{}\begin{matrix}2x+5=7\left(x\ge-\dfrac{5}{2}\right)\\2x+5=-7\left(x< -\dfrac{5}{2}\right)\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}2x=2\\2x=-12\end{matrix}\right.\) 

\(\Leftrightarrow\left[{}\begin{matrix}x=1\left(ktm\right)\\x=-6\left(tm\right)\end{matrix}\right.\)

Thay x=-6 vào C ta có:

\(C=\dfrac{2\cdot-6+1}{\left(-6\right)^2+\left(-6\right)-2}=\dfrac{-12+1}{36-6-2}=\dfrac{-11}{28}\)

Bình luận (0)
TT
Xem chi tiết
DH
25 tháng 12 2022 lúc 17:34

a) Điều kiện xác định của \(P\) là: 

\(\left(x+1\right)\left(2x-6\right)\ne0\Leftrightarrow\left\{{}\begin{matrix}x+1\ne0\\2x-6\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ne-1\\x\ne3\end{matrix}\right.\)

b) \(P=\dfrac{3x^2+3x}{\left(x+1\right)\left(2x-6\right)}\) (\(x\ne-1,x\ne3\))

\(=\dfrac{3x\left(x+1\right)}{2\left(x+1\right)\left(x-3\right)}=\dfrac{3x}{2\left(x-3\right)}\)

\(P=1\Rightarrow\dfrac{3x}{2\left(x-3\right)}=1\Rightarrow3x=2\left(x-3\right)\Leftrightarrow x=-6\) (thỏa mãn) 

c) \(P>0\Rightarrow\dfrac{3x}{2\left(x-3\right)}>0\Leftrightarrow\dfrac{x}{x-3}>0\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x>0\\x-3>0\end{matrix}\right.\\\left[{}\begin{matrix}x< 0\\x-3< 0\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x>3\\x< 0\end{matrix}\right.\)

Kết hợp với điều kiện xác định ta được để \(P>0\) thì \(x>3\) hoặc \(x< 0,x\ne-1\).

Bình luận (0)
PB
Xem chi tiết
CT
14 tháng 8 2018 lúc 8:49

Bình luận (0)
H24
Xem chi tiết
H24
25 tháng 2 2021 lúc 16:08

`a,x^3-8 ne 0`

`=>x^3 ne 8`

`=>x ne 2`

`b,2x^2+5x+3 ne 0`

`=>2x^2+2x+3x+3 ne 0`

`=>2x(x+1)+3(x+1) ne 0`

`=>(x+1)(2x+3) ne 0`

`=>x ne -1,-3/2`

`c,x^2-4 ne 0`

`=>x^2 ne 4`

`=>x ne 2,-2`

Bình luận (0)
ND
25 tháng 2 2021 lúc 16:10

a) ĐK:

 \(x^3-8\ne0\\ \Leftrightarrow x\ne2\)

b) ĐK:

 \(2x^2+5x+3\ne0\\ \Leftrightarrow\left[{}\begin{matrix}x\ne-1\\x\ne-\dfrac{3}{2}\end{matrix}\right.\)

c) ĐK:

\(x^2-4\ne0\\ \Leftrightarrow x\ne\pm2\)

Bình luận (0)
NT
25 tháng 2 2021 lúc 22:51

a) ĐKXĐ: \(x\ne2\)

b) ĐKXĐ: \(x\notin\left\{-\dfrac{3}{2};-1\right\}\)

c) ĐKXĐ: \(x\notin\left\{2;-2\right\}\)

Bình luận (0)
LN
Xem chi tiết
NM
16 tháng 12 2021 lúc 7:07

\(a,ĐK:x^2-1=\left(x-1\right)\left(x+1\right)\ne0\Leftrightarrow x\ne\pm1\\ \dfrac{3x+3}{x^2-1}=\dfrac{3\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}=\dfrac{3}{x-1}=2\\ \Leftrightarrow x-1=\dfrac{3}{2}\Leftrightarrow x=\dfrac{5}{2}\left(tm\right)\\ b,\dfrac{3}{x-1}\in Z\\ \Leftrightarrow x-1\inƯ\left(3\right)=\left\{-3;-1;1;3\right\}\\ \Leftrightarrow x\in\left\{-2;0;2;4\right\}\left(tm\right)\)

Bình luận (0)
PB
Xem chi tiết
CT
26 tháng 3 2018 lúc 9:30

Bình luận (0)
PB
Xem chi tiết
CT
31 tháng 7 2019 lúc 13:13

a) Tìm được x -6 và x  ≠  0.

b) Gợi ý: x 3  + 4 x 2  - 6x + 36 = (x + 6) ( x 2  - 2x + 6)

Tìm được  P = x 2 − 2 x + 6 2 x

c) Ta có P = 3 2 ⇔ x 2 − 5 x + 6 = 0 . Từ đó tìm được x = 2 hoặc x = 3 (TMĐK).

d) Tương tự câu c, tìm được x = -6 (KTM) hoặc x = -1 (TM)

e) P = 1 Þ  x 2 ‑ - 4x + 6=  0 Û ( x -   2 ) 2 + 2 = 0 (vô nghiệm)

Vì  ( x -   2 ) 2  + 2 2 > 0 với mọi x. Do vậy x ∈ ∅ .

Bình luận (0)