Cho tam giác ABC có a 2 = b 2 + c 2 - b c . Số đo của góc A là
A. 135 °
B. 150 °
C. 60 °
D. 120 °
Câu 1:
1) Cho tam giác ABC có góc A = góc C-10độ; góc B=góc C + 10độ. Tính các góc của tam giác ABC?
2) Cho tam giác ABC có góc B= 7/6 góc C; góc A= 5/6 góc C. Tính các góc của tam giác ABC?
3) cho tam giác ABC có góc A= 2. Góc B ; góc B = góc C . tính các góc của tam giác ABC?
4) Cho tam giác ABC có góc A= 5.góc C; góc B= 2.góc C. tínhcác góc của tam giác ABC?
Cho tam giác ABC có số đo 3 góc là A, B, C thỏa mãn điều kiện \(\tan\dfrac{A}{2}+\tan\dfrac{B}{2}+\tan\dfrac{C}{2}=\sqrt{3}\) . Tam giác ABC là tam giác gì ?
\(\dfrac{A}{2}+\dfrac{B}{2}=\dfrac{\pi}{2}-\dfrac{C}{2}\Rightarrow tan\left(\dfrac{A}{2}+\dfrac{B}{2}\right)=tan\left(\dfrac{\pi}{2}-\dfrac{C}{2}\right)\)
\(\Rightarrow\dfrac{tan\dfrac{A}{2}+tan\dfrac{B}{2}}{1-tan\dfrac{A}{2}tan\dfrac{B}{2}}=cot\dfrac{C}{2}=\dfrac{1}{tan\dfrac{C}{2}}\)
\(\Rightarrow tan\dfrac{A}{2}.tan\dfrac{C}{2}+tan\dfrac{B}{2}tan\dfrac{C}{2}=1-tan\dfrac{A}{2}tan\dfrac{B}{2}\)
\(\Rightarrow tan\dfrac{A}{2}tan\dfrac{B}{2}+tan\dfrac{B}{2}tan\dfrac{C}{2}+tan\dfrac{C}{2}tan\dfrac{A}{2}=1\)
Ta có:
\(tan\dfrac{A}{2}+tan\dfrac{B}{2}+tan\dfrac{C}{2}\ge\sqrt{3\left(tan\dfrac{A}{2}tan\dfrac{B}{2}+tan\dfrac{B}{2}tan\dfrac{C}{2}+tan\dfrac{C}{2}tan\dfrac{A}{2}\right)}=\sqrt{3}\)
Dấu "=" xảy ra khi và chỉ khi \(A=B=C\) hay tam giác ABC đều
1,cho tam giác ABC có góc A=90 độ, góc C=40 độ, vẽ đường phân giác AD và đường cao AH. Tính số đo góc HAD
2, cho tam giác ABC có góc B>góc C, vẽ phân giác AD của góc A
a, c/m góc ADC-ADB=B-C
b, dường thẳng chứa tia phân giác góc ngoài đỉnh A của tam giác ABC cắt đường thẳng BC tại E, C/m góc AEB=(B-C):2
3, cho tam giác ABC biết góc A=70 độ, B-C=30 độ
c/m tam giác ABC có 2 góc bằng nhau
4, cho tam giác ABC biết C=1/3.B, B=1/2.A
LÀm đc bài nào làm giúp mk nhé! cần gấp lắm! làm hết càng tốt, mk kick cho
Cho tam giác ABC có BC = a, AC = b, AB = c. Tính số đo góc A, biết b(b^2 - a^2) = c.(a^2 - c^2).
Câu 1:Cho tam giác ABC có góc B lớn hơn góc A là 15°,góc C lơn hơn góc A là 45°. Tính số đo góc B và A của tam giác ABC
Câu 2:Cho tam giác ABC có B lớn hơn A là 24°,góc C nhỏ hơn góc A là 30°. Tính số đo góc A và C của tam giác ABC
Câu 3:Cho tam giác ABC có góc B nhỏ hơn góc A là 25°,góc C lớn hơn góc B là 35°. Tính số đo góc B và C của tam giác ABC
Câu 4:Cho tam giác có góc A=30°. Kẻ các tia phân giác ED và CE của góc B và góc C. Biết số đo AEC bằng số đo góc ADB. Tính số đo góc B và C của tam giác ABC
câu 5:Cho tam giác ABC và một D thuộc miền trong tam giác.CMR: Góc BAC nhỏ hơn góc BDC
cho tam giác ABC có độ dài ba cạnh là a,b,c sao cho a^2+b^2+c^2 = ab+bc+ca . chứng minh rằng tam giác ABC là tam giác đều
a^2+b^2+c^2=ab+bc+ac
=>2a^2+2b^2+2c^2=2ab+2bc+2ac
<=>2a^2+2b^2+2c^2-2ab-2bc-2ac=0
<=>(a^2-2ab+b^2)+(b^2-2bc+c^2)+(c^2-2ac+a^2)=0
<=>(a-b)^2+(b-c)^2+(c-a)^2=0
=>a-b=b-c=c-a=0
=>a=b;b=c;c=a
=>a=b=c
=>tam giác abc là tam giác đều
Bài 1: Cho tam giác ABC vuông tại A.CMR: \(m^2_b +m^2_c =5m^2_a\)
Bài 2: Cho tam giác ABC thỏa mãn \(\frac{a^3+b^3-c^3}{a+b-c}=c^2\). Tìm số đo của \(\widehat{C}\)
Bài 3: Nhận dạng tam giác ABC nếu \(\frac{a^3+c^3-b^3}{a+c-b}=b^2\) và \(sinA.sinC=\frac{3}{4}\)
1.
Áp dụng công thức trung tuyến:
\(m_b^2+m_c^2=\dfrac{2a^2+2c^2-b^2}{4}+\dfrac{2a^2+2b^2-c^2}{4}\)
\(=\dfrac{4a^2+b^2+c^2}{4}\)
\(=\dfrac{9a^2+b^2+c^2-5a^2}{4}\)
\(=\dfrac{9\left(b^2+c^2\right)+b^2+c^2-5a^2}{4}\)
\(=5\left(\dfrac{b^2+c^2}{2}-\dfrac{a^2}{4}\right)=5m_a\)
Cho tam giác ABC có A(2,-2), B(-2,-1), C(1,2) . Chứng minh tam giác ABC là tam giác cân
\(AB=\sqrt{\left(-2-2\right)^2+\left(-1+2\right)^2}=\sqrt{17}\)
\(AC=\sqrt{\left(1-2\right)^2+\left(2+2\right)^2}=\sqrt{17}\)
Vậy tam giác ABC cân tại A.
cho tam giác ABC có B lớn hơn C. Đường phân giác của góc ngoài BAX của tam giác CB tại E.
a) CM: AEB = (B-C):2
b) Tính số đo của B,C của tam giác ABC biết A=60độ, AEB=15độ
cho tam giác ABC có AB=c,AC=b,BC=a.Biết S=2(b+a-c)(b-a+c).Tính số đo gócB