§1. Giá trị lượng giác của một góc bất kỳ từ 0 (độ) đến 180 (độ)

PN

Cho tam giác ABC có số đo 3 góc là A, B, C thỏa mãn điều kiện \(\tan\dfrac{A}{2}+\tan\dfrac{B}{2}+\tan\dfrac{C}{2}=\sqrt{3}\) . Tam giác ABC là tam giác gì ? 

NL
30 tháng 4 2021 lúc 21:59

\(\dfrac{A}{2}+\dfrac{B}{2}=\dfrac{\pi}{2}-\dfrac{C}{2}\Rightarrow tan\left(\dfrac{A}{2}+\dfrac{B}{2}\right)=tan\left(\dfrac{\pi}{2}-\dfrac{C}{2}\right)\)

\(\Rightarrow\dfrac{tan\dfrac{A}{2}+tan\dfrac{B}{2}}{1-tan\dfrac{A}{2}tan\dfrac{B}{2}}=cot\dfrac{C}{2}=\dfrac{1}{tan\dfrac{C}{2}}\)

\(\Rightarrow tan\dfrac{A}{2}.tan\dfrac{C}{2}+tan\dfrac{B}{2}tan\dfrac{C}{2}=1-tan\dfrac{A}{2}tan\dfrac{B}{2}\)

\(\Rightarrow tan\dfrac{A}{2}tan\dfrac{B}{2}+tan\dfrac{B}{2}tan\dfrac{C}{2}+tan\dfrac{C}{2}tan\dfrac{A}{2}=1\)

Ta có:

\(tan\dfrac{A}{2}+tan\dfrac{B}{2}+tan\dfrac{C}{2}\ge\sqrt{3\left(tan\dfrac{A}{2}tan\dfrac{B}{2}+tan\dfrac{B}{2}tan\dfrac{C}{2}+tan\dfrac{C}{2}tan\dfrac{A}{2}\right)}=\sqrt{3}\)

Dấu "=" xảy ra khi và chỉ khi \(A=B=C\) hay tam giác ABC đều

Bình luận (0)

Các câu hỏi tương tự
PN
Xem chi tiết
TT
Xem chi tiết
PN
Xem chi tiết
TT
Xem chi tiết
TL
Xem chi tiết
TL
Xem chi tiết
PN
Xem chi tiết
PA
Xem chi tiết
SK
Xem chi tiết