Những câu hỏi liên quan
PT
Xem chi tiết
NT
16 tháng 10 2023 lúc 20:23

a: \(A=1+2+2^2+...+2^{41}\)

=>\(2A=2+2^2+2^3+...+2^{42}\)

=>\(2A-A=2^{42}-1\)

=>\(A=2^{42}-1\)

b: \(A=\left(1+2\right)+2^2\left(1+2\right)+...+2^{40}\left(1+2\right)\)

\(=3\left(1+2^2+...+2^{40}\right)⋮3\)

\(A=\left(1+2+2^2\right)+2^3\left(1+2+2^2\right)+...+2^{39}\left(1+2+2^2\right)\)

\(=7\left(1+2^3+...+2^{39}\right)⋮7\)

Bình luận (0)
PB
Xem chi tiết
CT
24 tháng 8 2018 lúc 13:50

Ta có: A =  1   +   2   +   2 2   +   . . .   +   2 2009   +   2 2010

= 1 + 2 ( 1 + 2 +  2 2 ) + ... + 2 2008  ( 1 + 2 +  2 2  )

= 1 + 2 ( 1 + 2 + 4 ) + ... + 22008 ( 1 + 2 + 4 )

= 1 + 2 . 7 + ... +  2 2008  . 7 = 1 + 7 ( 2 + ... +  2 2008  )

Mà 7 ( 2 + ... +  2 2008 ) ⋮ 7. Do đó: A chia cho 7 dư 1.

Bình luận (0)
PB
Xem chi tiết
CT
5 tháng 2 2018 lúc 17:17

Ta có: A = 1 + 2 + 2 2  + 2 3 + ... + 2 2008  + 2 2009  + 2 2010

 

= 1 + 2 ( 1 + 2 + 22 ) + ... +  2 2008  ( 1 + 2 + 22 )

= 1 + 2 ( 1 + 2 + 4 ) + ... +  2 2008 ( 1 + 2 + 4 )

= 1 + 2 . 7 + ... + 2 2008 . 7 = 1 + 7 ( 2 + ... +  2 2008  )

Mà 7 ( 2 + ... +  2 2008 ) ⋮ 7. Do đó: A chia cho 7 dư 1.

Bình luận (0)
H24
Xem chi tiết
NN
14 tháng 5 2023 lúc 15:27

\(S=\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{2005}}\)

\(2.S=2+1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{2005}}\)

\(2.S-S=\left(2+1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{2005}}\right)-\left(1+\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{2006}}\right)\)

\(S=2-\dfrac{1}{2^{2006}}\)

Bình luận (0)
MB
Xem chi tiết
NT
17 tháng 1 2023 lúc 10:27

A=(1+2+2^2)+2^3(1+2+2^2)+...+2^2013(1+2+2^2)+2^2016

=7(1+2^3+...+2^2013)+2^2016

Vì 2^2016 chia 7 dư 1

nên A chia 7 dư 1

Bình luận (0)
ND
Xem chi tiết
NT
4 tháng 1 2024 lúc 19:18

\(A=1+2+2^2+2^3+...+2^{100}\)

\(=1+\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{99}+2^{100}\right)\)

\(=1+2\left(1+2\right)+2^3\left(1+2\right)+...+2^{99}\left(1+2\right)\)

\(=1+3\left(2+2^3+...+2^{99}\right)\)

=>A chia 3 dư 1

Bình luận (0)
H24
Xem chi tiết
PB
Xem chi tiết
CT
19 tháng 4 2018 lúc 12:16

Ta có

  2 1 + 2 2 + 2 3 + 2 4 + 2 5 + 2 6 + 2 7 +...+ 2 98 + 2 99 + 2 100

= 2 1 + ( 2 2 + 2 3 + 2 4 ) + ( 2 5 + 2 6 + 2 7 ) +...+ ( 2 98 + 2 99 + 2 100 )

= 2 + 2 2 1 + 2 + 2 2 + 2 5 1 + 2 + 2 2 + . . . + 2 98 1 + 2 + 2 2

= 2 + 2 2 . 7 + 2 5 . 7 + . . . + 2 98 . 7 = 2 + 7 2 2 + 2 5 + . . . + 2 98

Mà  7 . 2 2 + 2 5 + . . . + 2 98 ⋮ 7  

Nên  2 + 7 2 2 + 2 5 + . . . + 2 98 : 7   d ư   2

Bình luận (0)
PB
Xem chi tiết
CT
17 tháng 10 2019 lúc 8:44

Đề kiểm tra Toán 6 | Đề thi Toán 6

Bình luận (0)
PB
Xem chi tiết
CT
4 tháng 10 2017 lúc 9:16

Bình luận (0)