Giải phương trình nghiệm nguyên:
1)\(2x^2+3xy-2y^2=7\)
2)\(x^3-y^2=91\)
3)\(x^2-xy=6x-5y-8\)
Bài 1 Giải phương trình nghiệm nguyên sau :
a, 2x + 13y = 156
b, 2xy - 4x + y =7
c, 3xy + x - y =1
d, 2x^2 + 3xy - 2y^2 = 7
e, x^3 - y^3 =91
g, x^2 - xy = 6x -5y - 8
a) \(2x+13y=156\) (1)
.Ta thấy 156 và 2y đều chia hết cho 2 nên \(13y\) chia hết cho 2,do đó y chia hết cho 2 (do 13 và 2 nguyên tố cùng nhau)
Đặt \(y=2t\left(t\in Z\right)\).Thay vào phương trình (1),ta được:\(2x+13.2t=156\Leftrightarrow x+13t=78\)
Do đó \(\hept{\begin{cases}x=78-13t\\y=2t\end{cases}}\) (t là số nguyên tùy ý)
b)Biến đổi phương trình thành: \(2xy-4x=7-y\)
\(=2x\left(y-2\right)=7-y\).Ta thấy \(y\ne2\)(vì nếu y = 2 thì ta có 0.2x = 5 , vô ngiệm )
Do đó \(x=\frac{7-y}{y-2}=\frac{7+2-y-2}{y-2}=\frac{9}{y-2}-1\) .Do vậy để x nguyên thì \(\frac{9}{y-2}\) nguyên
hay \(y-2\inƯ\left(9\right)=\left\{\pm1;\pm3;\pm9\right\}\).Đến đây lập bảng tìm y là xong!
c) \(3xy+x-y=1\)
\(\Leftrightarrow9xy+3x-3y=3\)
\(\Leftrightarrow9xy+3x-3y-1=2\)
\(\Leftrightarrow3x\left(3y+1\right)-1\left(3y+1\right)=2\)
\(\Leftrightarrow\left(3x-1\right)\left(3y+1\right)=2\).Đến đây phương trình đã được đưa về phương trình ước số,bạn tự giải (mình lười quá man!)
tìm các nghiệm nguyên của các phương trình sau
a. 3xy + x - y = 1
b. \(2x^2+3xy-2y^2=7\)
c.\(x^3-y^3=91\)
d.\(x^2-xy=6x-5y-8\)
e.\(x^2-2y^2=5\)
a. 3xy + x - y = 1
<=> 9xy + 3x - 3y = 3
<=> 3x(3y+1) - (3y+1) = 2
<=> (3x-1)(3y+1)=2
Xét các trường hợp ta có x = 1, y = 0
Vậy nghiệm của pt là (1;0) ; (0;-1)
1) Tìm x,y nguyên dương:
\(x^2-y^2+2x-4y-10=0\)
2) Tìm các số nguyên x,y thỏa mãn:
\(x^3+2x^2+3x+2=y^3\)
3) Giải phương trình nguyên sau:
a) \(2x+5y+3xy=8\)
b) \(xy-y-x=2\)
c) \(xy-2y-3x+x^2=3\)
d) \(x^2-xy=6x-5y-8\)
Giải phương trình nghiệm nguyên 1)x^2-6x+54=y^2
2) x^2+3y^2=21
3)x^2+21=y^2
4)x^2+2y-2y^2=5
5)xy-x-y=2002
6)3x^2-12x+5y^2=57
7)x^2+x+1=(y^2+y+1)^2
8)x^2+xy+y^2=x^2y^2
9)3x^2+5y^2=345
10)x^6+3x^2+1=y^4
Tim nghiem nguyen
a)2\(x^2+3xy-2y^2=7\)
b)\(x^3-y^3=91\)
c)\(x^2-xy=6x-5y-8\)
a) Pt\(\Leftrightarrow\left(2x-y\right)\left(x+2y\right)=7\). Đến đây là pt trình tích với x,y nguyên, xét các TH là ra
b)\(\left(x-y\right)\left(x^2+xy+y^2\right)=91\). Đến đây cũng là pt tích nhưng chú ý: \(x^2+xy+y^2\ge0\) rồi giải ra
c) Pt\(\Leftrightarrow x^2-x\left(y+6\right)+5y+8=0\) là pt bậc 2 ẩn x có:
\(\Delta=\left(y+6\right)^2-4\left(5y+8\right)=y^2-8y+4.\)Để pt có nghiệm nguyên thì:
\(\Delta\)là số chính phương. Thật vậy, đặt \(\Delta=m^2\left(m\in Z\right)\Leftrightarrow y^2-8y+4=m^2\Leftrightarrow\left(y-4\right)^2-m^2=12\Leftrightarrow\left(y-m-4\right)\left(y+m-4\right)=12\)
Đến đây giải pt tích, chú ý: y-m-4 và y+m-4 cùng tính chẵn lẻ
Tìm nghiệm nguyên của phương trình :
a.x^2-xy=6x-5y-8
b.2x^2+3x^2-2y^2=7
Giải phương trình 1, \(x^2+9x+7=\left(2x+1\right)\sqrt{2x^2+4x+5}\)
2, GPT \(\left(2x+7\right)\sqrt{2x+7}=x^2+9x+7\)
3. GHPT \(\left\{{}\begin{matrix}x^2-2y-1=2\sqrt{5y+8}+\sqrt{7x-1}\\\left(x-y\right)\left(x^2+xy+y^2+3\right)=3\left(x^2+y^2\right)+2\end{matrix}\right.\)
1.
\(\Leftrightarrow\left(2x+1\right)\sqrt{2x^2+4x+5}-\left(2x+1\right)\left(x+3\right)+x^2-2x-4=0\)
\(\Leftrightarrow\left(2x+1\right)\left(\sqrt{2x^2+4x+5}-\left(x+3\right)\right)+x^2-2x-4=0\)
\(\Leftrightarrow\dfrac{\left(2x+1\right)\left(x^2-2x-4\right)}{\sqrt{2x^2+4x+5}+x+3}+x^2-2x-4=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2-2x-4=0\\\dfrac{2x+1}{\sqrt{2x^2+4x+5}+x+3}+1=0\left(1\right)\end{matrix}\right.\)
\(\left(1\right)\Leftrightarrow2x+1+\sqrt{2x^2+4x+5}+x+3=0\)
\(\Leftrightarrow\sqrt{2x^2+4x+5}=-3x-4\) \(\left(x\le-\dfrac{4}{3}\right)\)
\(\Leftrightarrow2x^2+4x+5=9x^2+24x+16\)
\(\Leftrightarrow7x^2+20x+11=0\)
2.
ĐKXĐ: ...
\(\Leftrightarrow2x\sqrt{2x+7}+7\sqrt{2x+7}=x^2+2x+7+7x\)
\(\Leftrightarrow\left(x^2-2x\sqrt{2x+7}+2x+7\right)+7\left(x-\sqrt{2x+7}\right)=0\)
\(\Leftrightarrow\left(x-\sqrt{2x+7}\right)^2+7\left(x-\sqrt{2x+7}\right)=0\)
\(\Leftrightarrow\left(x-\sqrt{2x+7}\right)\left(x+7-\sqrt{2x+7}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\sqrt{2x+7}\\x+7=\sqrt{2x+7}\end{matrix}\right.\)
\(\Leftrightarrow...\)
3.
ĐKXĐ: ...
Từ pt dưới:
\(\Leftrightarrow\left(x-y\right)\left(x^2+xy+y^2\right)+3x-3y=3x^2+3y^2+1+1\)
\(\Leftrightarrow x^3-y^3+3x-3y=3x^2+3y^2+1+1\)
\(\Leftrightarrow x^3-3x^2+3x-1=y^3+3y^2+3y+1\)
\(\Leftrightarrow\left(x-1\right)^3=\left(y+1\right)^3\)
\(\Leftrightarrow y=x-2\)
Thế vào pt trên:
\(x^2-2x+3=2\sqrt{5x-2}+\sqrt{7x-1}\)
\(\Leftrightarrow x^2-5x+2+2\left(x-\sqrt{5x-2}\right)+\left(x+1-\sqrt{7x-1}\right)=0\)
\(\Leftrightarrow x^2-5x+2+\dfrac{2\left(x^2-5x+2\right)}{x+\sqrt{5x-2}}+\dfrac{x^2-5x+2}{x+1+\sqrt{7x-1}}=0\)
\(\Leftrightarrow x^2-5x+2=0\)
Tìm các số nguyên x,y biết:
a, 2xy-x +2y=0
b,5xy+x+3y=-1
c,2x2+ 3xy - 2y2 =7
d,x2 -xy=6x-5y-8
Tìm các số nguyên x,y biết:
a, 2xy-x +2y=0
b,5xy+x+3y=-1
c,2x2 + 3xy - 2y2 =7
d,x2 -xy=6x-5y-8