Những câu hỏi liên quan
SK
Xem chi tiết
PT
30 tháng 3 2017 lúc 17:10

Hỏi đáp Toán

Bình luận (0)
TG
30 tháng 3 2017 lúc 17:41

Ta có: a2 = 16 => a = 4,b = 9 => b = 3 .

Mặt khác: c2 = a2 - b2 = 16 - 9 = 7 => c = \(\sqrt{7}\)

Tọa độ các đỉnh: A1 (-4;0), A2 (4;0), B1 (0;-3), B1 (0;-3), B2 (0;3) .

Tọa độ tiêu điểm: F1(-\(\sqrt{7}\);0),F2(\(\sqrt{7}\);0) .

Cho hình sau: undefined

Bình luận (0)
NS
Xem chi tiết
NL
Xem chi tiết
NL
13 tháng 5 2021 lúc 20:10

Từ phương trình \(\Rightarrow a^2=25\Rightarrow a=5\)

Độ dài trục lớn: \(2a=10\)

Bình luận (0)
MA
Xem chi tiết
MA
Xem chi tiết
NL
3 tháng 10 2021 lúc 19:28

Gọi \(M\left(x;y\right)\) là 1 điểm bất kì thuộc (E) \(\Rightarrow\dfrac{x^2}{9}+\dfrac{y^2}{4}=1\) (1)

Gọi \(M'\left(x';y'\right)\) là ảnh của M qua phép tịnh tiến nói trên \(\Rightarrow M'\in\left(E'\right)\)

\(\left\{{}\begin{matrix}x'=x+2\\y'=y+1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=x'-2\\y=y'-1\end{matrix}\right.\)

Thế vào (1):

\(\dfrac{\left(x'-2\right)^2}{9}+\dfrac{\left(y'-1\right)^2}{4}=1\)

Hay pt (E') có dạng: \(\dfrac{\left(x-2\right)^2}{9}+\dfrac{\left(y-1\right)^2}{4}=1\)

Bình luận (0)
TD
Xem chi tiết
XO
20 tháng 4 2023 lúc 21:22

Có \(c=\sqrt{a^2-b^2}=\sqrt{11}\)

Tiêu điểm \(F_1\left(\sqrt{11},0\right);F_2\left(-\sqrt{11},0\right)\)

Tiêu cự \(F_1F_2=2\sqrt{11}\)

Trục lớn : 2a = 12

Trục bé 2b = 10

Tâm sai \(e=\dfrac{c}{a}=\dfrac{\sqrt{11}}{6}\)

Bình luận (0)
HH
Xem chi tiết
QL
Xem chi tiết
HM
27 tháng 9 2023 lúc 0:23

a) Phương trình \(\frac{{{x^2}}}{{100}} + \frac{{{y^2}}}{{36}} = 1\) đã có dạng phương trình chính tắc \(\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1\) nên ta có: \(a = 10,b = 6 \Rightarrow c = \sqrt {{a^2} - {b^2}}  = \sqrt {{{10}^2} - {6^2}}  = 8 \)

Suy ra ta có:

Tọa độ các tiêu điểm: \({F_1}\left( { - 8;0} \right),{F_2}\left( {8;0} \right)\)

Tọa độ các đỉnh: \(A(0;6),B(10;0),C(0; - 6),D( - 10;0)\)

Độ dài trục lớn 20

Độ dài trục nhỏ 12

b) Phương trình \(\frac{{{x^2}}}{{25}} + \frac{{{y^2}}}{{16}} = 1\) đã có dạng phương trình chính tắc \(\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1\) nên ta có: \(a = 5,b = 4 \Rightarrow c = \sqrt {{a^2} - {b^2}}  = \sqrt {{5^2} - {4^2}}  = 3\)

Suy ra ta có:

Tọa độ các tiêu điểm: \({F_1}\left( { - 3;0} \right),{F_2}\left( {3;0} \right)\)

Tọa độ các đỉnh: \(A(0;4),B(5;0),C(0; - 4),D( - 5;0)\)

Độ dài trục lớn 10

Độ dài trục nhỏ 8

c) \({x^2} + 16{y^2} = 16 \Leftrightarrow \frac{{{x^2}}}{{16}} + \frac{{{y^2}}}{1} = 1\)

Vậy ta có phương trình chính tắc của elip đã cho là \(\frac{{{x^2}}}{{16}} + \frac{{{y^2}}}{1} = 1\)

Suy ra \(a = 4,b = 1 \Rightarrow c = \sqrt {{a^2} - {b^2}}  = \sqrt {{4^2} - {1^2}}  = \sqrt {15} \)

Từ đó ta có:

Tọa độ các tiêu điểm: \({F_1}\left( { - \sqrt {15} ;0} \right),{F_2}\left( {\sqrt {15} ;0} \right)\)

Tọa độ các đỉnh: \(A(0;1),B(4;0),C(0; - 1),D( - 4;0)\)

Độ dài trục lớn 8

Độ dài trục nhỏ 2

Bình luận (0)
DT
Xem chi tiết
NC
2 tháng 7 2020 lúc 9:40

(E) \(\frac{x^2}{16}+\frac{y^2}{4}=1\)

MF1 = MF2 => M thuộc đường trung trực của F1 F2 => M thuộc Oy 

=> M( 0; m ) 

Vì M thuộc E nên ta có: \(\frac{m^2}{4}=1\)=> m = 2 hoặc m = - 2

=> M(0; 2) hoặc M ( 0 ; -2)

Bình luận (0)
 Khách vãng lai đã xóa
HB
Xem chi tiết