Những câu hỏi liên quan
NA
Xem chi tiết
NL
5 tháng 2 2021 lúc 1:27

Đề thiếu dữ liệu để xác định độ dài SA rồi bạn

Bình luận (0)
PB
Xem chi tiết
CT
22 tháng 3 2019 lúc 12:25

Đáp án B

Gọi H là trọng tâm Δ A B C

Dựng H K ⊥ A B , H E ⊥ C D , H F ⊥ S E

Ta có A B ⊥ S H K ⇒ S K H ⏜ = 60 °

Do đó S H = H K tan 60 °

Mặc khác H K = H B sin 60 °  ( Do  Δ A B C  là tam giác đều nên A B D ⏜ = 60 ° ) suy ra  H K = a 3 sin 60 ° = a 3 6 ⇒ S H = a 2

Lại có H E = H D tan 60 ° = a 3 3 ⇒ H F = a 7 = d H ; S C D

Do đó  B D H D = 3 2 ⇒ d B = 3 2 d H = 3 a 17 14

Bình luận (0)
PB
Xem chi tiết
CT
17 tháng 8 2017 lúc 6:37

Đáp án B

Bình luận (0)
PB
Xem chi tiết
CT
23 tháng 10 2018 lúc 5:23

Đáp án A

Bình luận (0)
MB
Xem chi tiết
NT
10 tháng 5 2023 lúc 19:35

a: Xét ΔBAC có BA=BC và góc ABC=60 độ

nên ΔABC đều

=>\(S_{ABC}=\dfrac{a^2\sqrt{3}}{4}\)

=>\(S_{ABCD}=\dfrac{a^2\sqrt{3}}{2}\)

Bình luận (0)
HD
Xem chi tiết
LP
16 tháng 6 2023 lúc 10:14

 Gọi O là giao điểm của AC và BD. Dễ thấy \(\Delta OAB\) vuông tại O và \(OB=\dfrac{a\sqrt{3}}{2}\). Từ đó \(OA=\sqrt{AB^2-OB^2}=\sqrt{\left(\dfrac{\sqrt{3}}{2}a\right)^2-a^2}=\sqrt{\dfrac{1}{4}a^2}=\dfrac{a}{2}\) \(\Rightarrow AC=a\).

Vì \(SA\perp mp\left(ABCD\right)\) nên \(SA\perp AC\) tại A hay \(\Delta SAC\) vuông tại A. 

Lại có \(\tan SAC=\dfrac{SA}{AC}=\dfrac{a\sqrt{3}}{a}=\sqrt{3}\) nên \(\widehat{SAC}=60^o\), suy ra góc giữa SC và mp(ABCD) bằng 60o \(\Rightarrow\) Chọn A

 

Bình luận (0)
LP
16 tháng 6 2023 lúc 10:15

Chỗ \(\widehat{SAC}\) em sửa lại là \(\widehat{SCA}\) mới đúng ạ.

Bình luận (0)
PB
Xem chi tiết
CT
8 tháng 7 2018 lúc 17:58

ĐÁP ÁN: D

Bình luận (0)
NV
Xem chi tiết
LV
Xem chi tiết
HH
18 tháng 5 2021 lúc 10:42

undefined

Bình luận (0)