số ước của một số nguyên tố là........
Mỗi phát biểu sau đúng hay sai? Vì sao?
a) Mỗi số tự nhiên không là số nguyên tố thì sẽ là hợp số.
b) Mọi số nguyên tố đều là số lẻ.
c) 3 là ước nguyên tố của 6 nên 3 cũng là ước nguyên tố của 18.
d) Mọi số tự nhiên đều có ước nguyên tố.
a)Sai => Vì số 1 và 0 không phải là số nguyên tố cũng không phải là hợp số.
b)Sai => Vì có 2 là số nguyên tố chẵn duy nhất
c)Đúng
d)Đúng
a) Sai vì có 0 hoặc 1 vừa không là nguyên tố cũng không là hợp số
b) Sai vì 2 cũng là số nguyên tố nhưng 2 là số chẵn
c) Đúng
d) Sai vì số 1 không có ước nguyên tố
Số ước nguyên của một số nguyên tố là ?
số ước nguyên của một số nguyên tố là....
Số ước nguyên của một số nguyên tố là 4 ước
bài 1
phân tích các số sau 36,52,134,391,1463 ra thừa số nguyên tố
a) tìm các ước nguyên tố của mỗi số trên
b) tìm các ước nguyên mỗi số
bài 2
a) viết các số chỉ có ước nguyên tố là 7
b) viết bốn số tự nhiên mà mỗi số có đúng ba ước nguyên tố
một số nguyên dương N có đúng 12 ước số ( dương ) khác nhau kể cả chính nó và 1 , nhưng chỉ có 3 ước số nguyên tố khác nhau . Giả sử tổng của các ước số nguyên tố là 20 tính giá trị nhỏ nhất có thể có của N
Gọi các ước nguyên tố của số N là p ; q ; r và p < q < r
\(\Rightarrow p=2;q+r=18\Rightarrow\orbr{\begin{cases}q=5;r=13\\q=7;r=11\end{cases}\Rightarrow\orbr{\begin{cases}N=2^a.5^b.13^c\\N=2^a.7^b.11^c\end{cases}}}\)
Với a ; b; c \(\in\)N và \(\left(a+1\right)\left(b+1\right)\left(c+1\right)=12\Rightarrow12=2.2.3\)
Do đó N có thể là \(2^2.5.13;2.5^2.13;2.5.13^2;2^2.7.11;2.7^2.11;2.7.11^2\)
N nhỏ nhất nên \(N=2^2.5.13=260\)
phân tích số 50 ra thừa số nguyên tố được :50 = 2.52 kết luận nào sau đây đúng
A số 50 có hai ước nguyên tố đó là 2 và 5
B số 50 có hai ước nguyên tố đó là số 2 và 52
C SỐ 50 CÓ MỘT ƯỚC NGUYÊN TỐ LÀ SỐ 2
D KHÔNG CÓ ƯỚC NGUYÊN TỐ NÀO
Cho p là một số nguyên tố. Tìm p để tổng các ước nguyên dương của \(p^4\) là một số chính phương
Do p là SNT nên \(p^4\) chỉ có các ước nguyên dương là \(1;p;p^2;p^3;p^4\)
\(\Rightarrow1+p+p^2+p^3+p^4=k^2\) với \(k\in N\)
\(\Rightarrow\left(2k\right)^2=4p^4+4p^3+4p^2+4p+4=\left(2p^2+p\right)^2+\left(3p^2+4p+4\right)>\left(2p^2+p\right)^2\)
Đồng thời: \(4p^4+4p^3+4p^2+4p+4=\left(2p^2+p+2\right)^2-5p^2< \left(2p^2+p+2\right)^2\)
\(\Rightarrow\left(2p^2+p\right)^2< \left(2k\right)^2< \left(2p^2+p+2\right)^2\)
\(\Rightarrow\left(2k\right)^2=\left(2p^2+p+1\right)^2\)
\(\Rightarrow4p^4+4p^3+4p^2+4p+4=\left(2p^2+p+1\right)^2\)
\(\Rightarrow p^2-2p-3=0\Rightarrow\left[{}\begin{matrix}p=-1\left(ktm\right)\\p=3\left(tm\right)\end{matrix}\right.\)
Câu 2: Cho các khẳng định sau. Có bao nhiêu khẳng định sai?
1. Ước nguyên tố của 30 là 5 và 6.
2. Tích của hai số nguyên tố bất kì luôn là số lẻ.
3. Mọi số nguyên tố đều là số lẻ.
4. Mọi số chẵn đều là hợp số.
5. Ước nguyên tố nhỏ nhất của số chẵn là 2.
a)1 b)2 c)3 d)4
Mình cần gấp ạ
Các khẳng định: 1. Ước nguyên tố của 30 là 5 và 6. - Khẳng định này là sai, vì ước của 30 là 1, 2, 3, 5, 6, 10, 15, 30. 2. Tích của hai số nguyên tố bất kì luôn là số lẻ. - Khẳng định này là sai, ví dụ: 2 và 3 là hai số nguyên tố nhưng tích của chúng là số chẵn. 3. Mọi số nguyên tố đều là số lẻ. - Khẳng định này là sai, vì số nguyên tố duy nhất là số 2 là số chẵn. 4. Mọi số chẵn đều là hợp số. - Khẳng định này là đúng, vì một số chẵn bao gồm ít nhất hai thừa số riêng biệt (2 và số chẵn đó) nên nó là hợp số. 5. Ước nguyên tố nhỏ nhất của số chẵn là 2. - Khẳng định này là đúng, vì một số chẵn luôn có ước nguyên tố chung là số 2.
Khẳng định 1 sai vì 30 = 2.3.5 nên có ước nguyên tố là 2; 3; 5
Khẳng định 2 sai vì 2 và 3 là số nguyên tố nhưng 2.3=6 là số chẵn
Khẳng định 3 sai vì 2 là số nguyên tố nhưng 2 là số chẵn
Khẳng định 4 sai vì 2 là số chẵn nhưng 2 là số nguyên tố
Chứng minh : nếu một số nguyên tố a có đúng 3 ước phân biệt thì a là bình phương của 1 số nguyên tố