Những câu hỏi liên quan
TM
Xem chi tiết
TD
Xem chi tiết
AP
Xem chi tiết
HT
25 tháng 2 2022 lúc 20:48

a) Để m đạt giá trị lớn nhất là 0 thì \(y=\left(3m-4\right)x^2\le0\) ⇔ \(3m-4\le0\)

                                                                                       ⇔ \(m\le\dfrac{4}{3}\) nhưng theo điều kiện  

                                                                                             thì m ≠ \(\dfrac{4}{3}\)

➤ Để m đạt giá trị lớn nhất là 0 thì \(m< \dfrac{4}{3}\)

b) Để m đạt giá trị nhỏ nhất là 0 thì \(y=\left(3m-4\right)x^2\ge0\) ⇔ \(3m-4\ge0\)

                                                                                       ⇔ \(m\ge\dfrac{4}{3}\) nhưng theo điều kiện  

                                                                                           thì m ≠ \(\dfrac{4}{3}\)

➤ Để m đạt giá trị nhỏ nhất là 0 thì \(m>\dfrac{4}{3}\)

                                                                                        

 

Bình luận (0)
NL
Xem chi tiết
NT
23 tháng 2 2021 lúc 22:09

Câu 1: 

a) Để hàm số \(y=\left(3m+5\right)\cdot x^2\) nghịch biến với mọi x>0 thì \(3m+5< 0\)

\(\Leftrightarrow3m< -5\)

hay \(m< -\dfrac{5}{3}\)

Vậy: Để hàm số \(y=\left(3m+5\right)\cdot x^2\) nghịch biến với mọi x>0 thì \(m< -\dfrac{5}{3}\)

b) Để hàm số \(y=\left(3m+5\right)\cdot x^2\) đồng biến với mọi x>0 thì

3m+5>0

\(\Leftrightarrow3m>-5\)

hay \(m>-\dfrac{5}{3}\)

Vậy: Để hàm số \(y=\left(3m+5\right)\cdot x^2\) đồng biến với mọi x>0 thì \(m>-\dfrac{5}{3}\)

Bình luận (0)
NL
23 tháng 2 2021 lúc 22:41

2.

Để hàm nghịch biến với x>0 \(\Leftrightarrow\sqrt{3k+4}-3< 0\)

\(\Leftrightarrow\sqrt{3k+4}< 3\Leftrightarrow3k+4< 9\)

\(\Rightarrow-\dfrac{4}{3}\le k< \dfrac{5}{3}\)

Để hàm đồng biến khi x>0

\(\Leftrightarrow\sqrt{3k+4}-3>0\Leftrightarrow\sqrt{3k+4}>3\)

\(\Leftrightarrow3k+4>9\Rightarrow k>\dfrac{5}{3}\)

Bình luận (0)
PB
Xem chi tiết
CT
21 tháng 5 2019 lúc 11:59

Chọn B

Phương pháp:

Tính y', để hàm số đồng biến trên ℝ  thì (y' = 0 tại hữu hạn điểm)

Sử dụng 

Cách giải:

Tập xác định D =  ℝ

Đạo hàm 

Để hàm số đồng biến trên  thì (y' = 0 tại hữu hạn điểm)

Suy ra giá trị lớn nhất của tham số m thỏa mãn ycbt là m = 3

Bình luận (0)
PB
Xem chi tiết
CT
22 tháng 9 2019 lúc 11:21

Bình luận (0)
PB
Xem chi tiết
CT
12 tháng 6 2018 lúc 4:39

Bình luận (0)
QM
Xem chi tiết
NL
13 tháng 12 2021 lúc 18:02

a. Hàm đồng biến khi:

\(m+3>0\Rightarrow m>-3\)

b. Hàm nghịch biến khi:

\(m+3< 0\Rightarrow m< -3\)

Bình luận (0)
KR
Xem chi tiết
HP
22 tháng 3 2021 lúc 6:13

b, \(\left\{{}\begin{matrix}x^2-2x-3\le0\\x^2-2mx+m^2-9\ge0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}-1\le x\le3\\x^2-2mx+m^2-9\ge0\end{matrix}\right.\)

Yêu cầu bài toán thỏa mãn khi phương trình \(f\left(x\right)=x^2-2mx+m^2-9\ge0\) có nghiệm \(x\in\left[-1;3\right]\)

\(\Leftrightarrow\left\{{}\begin{matrix}\Delta'=m^2-m^2+9=9>0,\forall m\\-1< m< 3\\f\left(-1\right)=m^2+2m-8\ge0\\f\left(3\right)=m^2-6m\ge0\end{matrix}\right.\)

\(\Leftrightarrow m\in[2;3)\cup(-1;0]\)

Bình luận (0)
PB
Xem chi tiết
CT
3 tháng 6 2019 lúc 17:37

Đáp án C

Bình luận (0)