hoành độ giao điểm của hai đường thẳng
y=2x-3 ; y=-1/2x-1/2 là
Cho hệ phương trình
(m-1)x - my = 3m-1
2x -y = m+5
với m = ..... thỉ hệ nghiệm duy nhất thỏa mãn x + y = 0
Nếu hai đường thẳng y=2x+3+m và y=x+6-m cắt nhau tại một điểm trên trục hoành thì hoành độ giao điểm đó là x= ....
Trục hoành là y = 0, tìm giao điểm của trục hoành với một trong hai đường, chẳng hạn : y = x + 6 - m
PT hoành độ giao điểm : x + 6 - m = 0 <=> x = m - 6
Phương trình hoành độ giao điểm của y = 2x + 3 + m với y = 0 (trục Ox) :
2x + 3 + m = 0
Thay x = m - 6 vào phương trình trên :
2(m - 6) + 3 + m = 0
<=> 3m = 9
<=> m = 3
Vậy m cần tìm là m = 3
=>x=3-2.3=-3
Nếu hai đường thẳng y = 2x+3+m và y=x+6-m cắt nhau tại một điểm trên trục hoành thì hoành độ giao điểm đó là
3 + m = 6- m => m = 3/2 => b =2+m = 2 +3/2 =7/2
=> Giao điểm A( 0; 7/2 )
Gọi giao điểm của các đường thẳng y = 0,5x + 2 và y = 5 – 2x với trục hoành theo thứ tự là A, B và gọi giao điểm của hai đường thẳng đó là C.
Tìm tọa độ của các điểm A, B, C.
Ở câu a) ta tính được tọa độ của hai điểm A và B là A(-4 ; 0) và B (2,5 ; 0)
Hoành độ giao điểm C của hai đồ thị (1) và (2) là nghiệm của phương trình:
0,5 x + 2 = 5 - 2x
⇔ 0,5x + 2x = 5 – 2
⇔ 2,5.x = 3 ⇔ x = 1,2
⇒ y = 0,5.1,2 + 2 = 2, 6
Vậy tọa độ điểm C(1,2; 2,6).
Nếu hai đường thẳng y=2x+3+m và y=x+6-m cắt nhau tại một9 điểm trên trục hoành thì hoành độ giao điểm đó là........
Trục hoành là y = 0, tìm giao điểm của trục hoành với một trong hai đường, chẳng hạn : y = x + 6 - m
PT hoành độ giao điểm : x + 6 - m = 0 <=> x = m - 6
Phương trình hoành độ giao điểm của y = 2x + 3 + m với y = 0 (trục Ox) :
2x + 3 + m = 0
Thay x = m - 6 vào phương trình trên :
2(m - 6) + 3 + m = 0
<=> 3m = 9
<=> m = 3
Vậy m cần tìm là m = 3
hoành độ giao điểm của đường thẳng y=2x-5 với trục hoành là?
2,5. Kiến thức cơ bản mà cũng hỏi hả bạn
Cho parabol (P): y = x2 và đường thẳng (d): y = 2x+3 . Chứng minh (P), (d) cắt nhau tại hai điểm phân biệt và tìm hoành độ hai giao điểm đó.
Phương trình hoành độ giao điểm là:
\(x^2-2x-3=0\)
a=1; b=-2; c=-3
Vì ac<0 nên phương trình có hai nghiệm phân biệt
\(\Leftrightarrow\left(x-3\right)\left(x+1\right)=0\)
=>x=3 hoặc x=-1
1. Trên hệ trục tọa độ Oxy, vẽ đồ thị hàm số y=2x+2 và y=2x
2. Gọi A là giao điểm của hai đồ thị đó. Tìm tọa độ của A.
3. Qua điểm (0,2) vẽ đường thẳng song song với trục hoành, cắt hai đường thẳng tại hai điểm B,C. Tính diện tích tam giác ABC
2: Vì y=2x+2//y=2x nên y=2x+2 và y=2x không có điểm chung
hay A không có tọa độ
viết phương trình đường thẳng
a) đường thẳng song song vs đường thẳng (d1): y=3x-1 và đi qua giao điểm của 2 đường thẳng (d2): y=-x+5 và (d3): y=x-4
b)đường thẳng vuông góc vs đường thẳng (d1) y=-5x-3 và ik qua giao điểm 2 đường thẳng (d2) y=2-3x , (d3) y=-x+4
c)đưởng thẳng cắt trục hoành tại điểm có hoành độ =-1 và song song vs đưởng thẳng y=5x-2
d) đưởng thẳng giao vs trục tung tại điểm D có tung độ =-6 và vuông góc vs đưởng thẳng y=4x+3
e) đường thẳng cắt trục Ox tại điểm E có hoành độ =2 và vuông góc vs đường thẳng y=3x-1
f) biết tung độ giao điểm đường thẳng vs trục Oy =-5 và vuông góc vs đường thẳng y=-2x+3
g) biết hoành độ giao điểm của đường thẳng vs trục Ox =3 và hợp vs Ox 1 góc 30 độ
h) biết tung độ giao điểm đường thẳng vs trục Oy = \(\frac{-1}{2}\) và hợp vs trục Ox 1 góc 60 độ
AI ĐÓ TỐT BỤNG GIÚP MK VS MAI MK KTRA RÙI!!!
Trên mặt phẳng tọa độ cho hai điểm B(4; 0) và C(-1; 4).
a) Viết phương trình đường thẳng (d) đi qua điểm C và song song với đường thẳng y = 2x-3. Xác định tọa độ giao điểm A của đường thẳng (d) với trục hoành Ox.
b) Xác định các hệ số a và b biết đồ thị hàm số y= ax +b đi qua 2 điểm B và C. Tính góc tạo bởi đường thẳng BC và trục hoành Ox (làm tròn đến phút).
c) Tính chu vi của tam giác ABC (đơn vị đo trên các trục tọa độ là xentimét) (kết quả làm tròn đến chữ số thập phân thứ nhất).
a) Gọi (d): y=ax+b
Vì (d)//y=2x-3 nên \(\left\{{}\begin{matrix}a=2\\b\ne-3\end{matrix}\right.\)
Vậy: (d): y=2x+b
Vì (d) đi qua điểm C(-1;4) nên
Thay x=-1 và y=4 vào (d), ta được:
\(2\cdot\left(-1\right)+b=4\)
hay b=6
Vậy: (d): y=2x+6
Thay y=0 vào (d), ta được:
2x+6=0
hay x=-3
Vậy: A(-3;0)
b) Vì y=ax+b đi qua hai điểm B(4;0) và C(-1;4) nên ta có hệ phương trình:
\(\left\{{}\begin{matrix}4a+b=0\\-a+b=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}5a=-4\\b=a+4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=-\dfrac{4}{5}\\b=\dfrac{-4}{5}+4=\dfrac{-4}{5}+\dfrac{20}{5}=\dfrac{16}{5}\end{matrix}\right.\)
Trên mặt phẳng tọa độ cho hai điểm B(4; 0) và C(-1; 4).
a) Viết phương trình đường thẳng (d) đi qua điểm C và song song với đường thẳng y = 2x-3. Xác định tọa độ giao điểm A của đường thẳng (d) với trục hoành Ox.
b) Xác định các hệ số a và b biết đồ thị hàm số y= ax +b đi qua 2 điểm B và C. Tính góc tạo bởi đường thẳng BC và trục hoành Ox (làm tròn đến phút).
c) Tính chu vi của tam giác ABC (đơn vị đo trên các trục tọa độ là xentimét) (kết quả làm tròn đến chữ số thập phân thứ nhất).
a) Gọi (d): y=ax+b
Vì (d)//y=2x-3 nên ta có: \(\left\{{}\begin{matrix}a=2\\b\ne-3\end{matrix}\right.\)
=> (d): y=2x+b
Thay x=-1 và y=4 vào (d), ta được:
\(2\cdot\left(-1\right)+b=4\)
\(\Leftrightarrow b=6\)
Vậy: (D): y=2x+6
Thay y=0 vào (d),ta được:
\(2x+6=0\)
\(\Leftrightarrow x=-3\)
Vậy: A(-3;0)
b) Vì đồ thị hàm số y=ax+b đi qua hai điểm B(4;0) và C(-1;4) nên ta có hệ phương trình:
\(\left\{{}\begin{matrix}4a+b=0\\-a+b=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}5a=-4\\-a+b=4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=-\dfrac{4}{5}\\b=4+a=4+\dfrac{-4}{5}=4-\dfrac{4}{5}=\dfrac{16}{5}\end{matrix}\right.\)
Vậy: \(a=-\dfrac{4}{5}\); \(b=\dfrac{16}{5}\)
c) Độ dài đoạn thẳng AB là:
\(AB=\sqrt{\left(-3-4\right)^2+\left(0-0\right)^2}=7\)(cm)
Độ dài đoạn thẳng AC là:
\(AC=\sqrt{\left(-3+1\right)^2+\left(0-4\right)^2}=2\sqrt{5}\left(cm\right)\)
Độ dài đoạn thẳng BC là:
\(BC=\sqrt{\left(4+1\right)^2+\left(0-4\right)^2}=\sqrt{41}\left(cm\right)\)
Chu vi tam giác ABC là:
\(C_{ABC}=AB+AC+BC\)
\(=7+2\sqrt{5}+\sqrt{41}\)
\(\simeq17,9\left(cm\right)\)