Những câu hỏi liên quan
PB
Xem chi tiết
CT
20 tháng 9 2017 lúc 9:29

Phương trình x2 + 2(m – 1)x + m2 = 0

Có a = 1; b = 2(m – 1); c = m2 nên b’ = m-1

⇒ Δ’ = b'2 – ac = (m – 1)2 – m2 = - 2m + 1.

Phương trình có nghiệm ⇔ Δ’ ≥ 0 ⇔ - 2m + 1 ≥ 0 ⇔ m ≤ 1/2.

Khi đó, theo định lý Vi-et: Giải bài 30 trang 54 SGK Toán 9 Tập 2 | Giải toán lớp 9

Vậy với m ≤ ½, phương trình có hai nghiệm có tổng bằng -2(m – 1), tích bằng m2

Bình luận (0)
PB
Xem chi tiết
CT
2 tháng 11 2019 lúc 11:16

Phương trình x2 – 2x + m = 0

Có a = 1; b = -2; c = m nên b’= -1

⇒ Δ’ = (-1)2 – 1.m = 1 – m

Phương trình có nghiệm ⇔ Δ’ ≥ 0 ⇔ 1 – m ≥ 0 ⇔ m ≤ 1.

Khi đó, theo định lý Vi-et: Giải bài 30 trang 54 SGK Toán 9 Tập 2 | Giải toán lớp 9

 

Vậy với m ≤ 1, phương trình có hai nghiệm có tổng bằng 2; tích bằng m.

Bình luận (0)
H24
Xem chi tiết
H24
8 tháng 6 2023 lúc 16:13

a) Để phương trình có 2 nghiệm phân biệt 

<=> \(\Delta=\left[-\left(4m+3\right)^2\right]-4.2.\left(2m-1\right)=16m^2+24m+9-16m+8=16m^2+8m+1+16=\left(4m+1\right)^2+16>0\)

với mọi giá trị của m. 

Vậy phương trình luôn có 2 nghiệm phân biệt với mọi giá trị của m.

b) Vì phương trình luôn có 2 nghiệm phân biệt với mọi giá trị của m nên ta có: x1+x2\(\dfrac{4m+3}{2}\)và x1.x2=\(\dfrac{2m-1}{2}\)

Bình luận (0)
NK
Xem chi tiết
SK
Xem chi tiết
QD
4 tháng 4 2017 lúc 16:42

a) Phương trình x2– 2x + m = 0 có nghiệm khi ∆' = 1 - m ≥ 0 hay khi m ≤ 1

Khi đó x1 + x2 = 2, x1 . x2 = m

b) Phương trình x2 – 2(m – 1)x + m2 = 0 có nghiệm khi

\(\text{∆}'=m^2-2m+1-m^2=1-2m\ge0\)' hay khi m \(\le\dfrac{1}{2}\)

Khi đó x1 + x2 = -2(m – 1), x1 . x2 = m2

Bình luận (1)
NM
4 tháng 4 2017 lúc 17:40

a) Phương trình x2– 2x + m = 0 có nghiệm khi ∆' = 1 - m ≥ 0 hay khi m ≤ 1

Khi đó x1 + x2 = 2, x1 . x2 = m

b) Phương trình x2 – 2(m – 1)x + m2 = 0 có nghiệm khi

∆' = m2 - 2m + 1 – m2 = 1 – 2m ≥ 0 hay khi m ≤

Khi đó x1 + x2 = -2(m – 1), x1 . x2 = m2

Bình luận (0)
NL
Xem chi tiết
NL
7 tháng 4 2022 lúc 17:57

a.

\(\Delta=m^2-4\left(2m-4\right)=m^2-8m+16=\left(m-4\right)^2\ge0;\forall m\)

\(\Rightarrow\) Phương trình đã cho luôn có nghiệm với mọi m

b.

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=-m\\x_1x_2=2m-4\end{matrix}\right.\)

c.

\(x_1^2+x_2^2=4\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=4\)

\(\Leftrightarrow m^2-2\left(2m-4\right)=4\)

\(\Leftrightarrow m^2-4m+4=0\Rightarrow m=2\)

Bình luận (0)
NT
7 tháng 4 2022 lúc 17:59

a.\(\Delta=m^2-4\left(2m-4\right)=m^2-8m+16=\left(m-4\right)^2\ge0\)

=> pt luôn có nghiệm với mọi m

b.Theo hệ thức Vi-ét, ta có:

\(\left\{{}\begin{matrix}x_1+x_2=-m\\x_1.x_2=2m-4\end{matrix}\right.\)

c.\(x_1^2+x_2^2=4\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1.x_2=4\)

\(\Leftrightarrow\left(-m\right)^2-2\left(2m-4\right)=4\)

\(\Leftrightarrow m^2-4m+8-4=0\)

\(\Leftrightarrow m^2-4m+4=0\)

\(\Leftrightarrow\left(m-2\right)^2=0\)

\(\Leftrightarrow m=2\)

Bình luận (0)
GF
Xem chi tiết
NC
26 tháng 5 2020 lúc 1:29

a)

+) Với m = 0  thay vào phương trình ta có: 1 = 0 => loại 

+) Với m khác 0 

\(\Delta'=m^2-m=m\left(m-1\right)\)

Để phương trình có nghiệm điều kiện là: \(m\left(m-1\right)\ge0\)

TH1: m \(\ge\)0 và m - 1 \(\ge\)

<=> m \(\ge\) 0 và m \(\ge\)

<=> m \(\ge\)

 TH2: m \(\le\) 0 và m - 1  \(\le\)

<=> m \(\le\)0 và m \(\le\)1

<=> m \(\le\)

Đối chiếu điều kiên m khác 0

Vậy m < 0 hoặc m \(\ge\)1

+) Tính nghiệm của phương trình theo m. Tự làm áp dụng công thức

b) Gọi \(x_1;x_2\) là hai nghiệm của phương trình 

Theo định lí vi ét ta có: 

\(x_1x_2=\frac{1}{m};x_1+x_2=\frac{2m}{m}=2\)

Không mất tính tổng quát ta g/s: \(x_1=2x_2\)

=> \(3x_2=2\Leftrightarrow x_2=\frac{2}{3}\)=> \(x_1=\frac{4}{3}\)

Ta có: \(\frac{4}{3}.\frac{2}{3}=\frac{1}{m}\)

<=> \(m=\frac{9}{8}\)( thỏa mãn a )

Thử lại thỏa mãn 

Vậy m = 9/8

Bình luận (0)
 Khách vãng lai đã xóa
NS
Xem chi tiết
TT
24 tháng 2 2022 lúc 8:50

a) Thay \(x=0\) vào phương trình ta có:

\(\left(m-1\right).0^2-2m.0+m+1=0.\\ \Leftrightarrow m+1=0.\\ \Leftrightarrow m=-1.\)

b) Ta có: \(\Delta'=m^2-\left(m-1\right)\left(m+1\right).\)

 \(\Delta'=m^2-\left(m^2-1\right).\\ =m^2-m^2+1.\\ =1>0.\)

\(\Rightarrow\) Phương trình có 2 nghiệm phân biệt \(x_1;x_2.\)

Theo Viet: \(\left\{{}\begin{matrix}x_1.x_2=\dfrac{m+1}{m-1}.\\x_1+x_2=\dfrac{2m}{m-1}.\left(1\right)\end{matrix}\right.\)

Theo đề bài: \(x_1.x_2=5.\)

\(\Rightarrow\dfrac{m+1}{m-1}=5.\\ \Leftrightarrow m+1=5m-5.\\ \Leftrightarrow4m-6=0.\\ \Leftrightarrow m=\dfrac{3}{2}.\)

Thay \(m=\dfrac{3}{2}\) vào \(\left(1\right):\)

\(x_1+x_2=\) \(\dfrac{2.\dfrac{3}{2}}{\dfrac{3}{2}-1}=\dfrac{3}{\dfrac{1}{2}}=6.\)

Bình luận (0)
PB
Xem chi tiết
CT
11 tháng 11 2018 lúc 12:16

a) Xét: x2 - 4mx + 9.(m – 1)2 = 0 (1)

Δ’ = (2.m)2 – 9.(m – 1)2 = 4m2 – 9.(m2 – 2m + 1) = -5m2 + 18m – 9

Phương trình (1) có nghiệm ⇔ Δ’ ≥ 0

⇔ -5m2 + 18m – 9 ≥ 0

⇔ 5m2 - 18m + 9 ≤ 0

⇔ (5m – 3)(m – 3) ≤ 0

⇔ 3/5 ≤ m ≤ 3.

b) + x1 ; x2 là hai nghiệm của (1) nên theo định lý Vi-et ta có:

Giải bài 3 trang 160 SGK Đại Số 10 | Giải toán lớp 10

+ Tìm hệ thức giữa x1 và x2 không phụ thuộc vào m.

Giải bài 3 trang 160 SGK Đại Số 10 | Giải toán lớp 10

Giải bài 3 trang 160 SGK Đại Số 10 | Giải toán lớp 10

Thử lại:

+ m = 1, (1) trở thành x2 – 4x = 0 có hai nghiệm x = 0; x = 4 có hiệu bằng 4

+ m = 13/5, (1) trở thành Giải bài 3 trang 160 SGK Đại Số 10 | Giải toán lớp 10 có hai nghiệm x = 7,2 và x = 3,2 có hiệu bằng 4.

Vậy m = 1 hoặc m = 13/5.

Bình luận (0)